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Abstract. Intrusion Detection Systems (IDS’s) are essential components in a
network communication infrastructure, as they enforce security by monitoring
traffic and detecting malicious activities. In this research, Computational Intel-
ligence models support an IDS technology to obtain a synthetic, effective visu-
alization of the traffic analysis. Auto-Associative Back-Propagation (AABP)
neural networks map feature vectors extracted from traffic sources into a com-
pact representation on a 2-D display. During training, the neural network learns
to compress the data in an unsupervised fashion; at run time, the trained neural
component synthesizes an effective, 2-D representation of the traffic situation.
Empirical tests involving Simple Network Management Protocol (SNMP) traf-
fic proved the validity of the approach.
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1 Introduction

Intrusion Detection Systems (IDS’s) ensure the security of computer networks by
monitoring traffic and generating alerts, or taking actions, when suspicious activities
are detected. IDS’s nowadays are standard components in networked infrastructures,
as they effectively support administrators in detecting attacks and policy violations.
Two basic approaches exist toward that end [1]: misuse intrusion detection (MID) and
anomaly intrusion detection (AID). The former typically rely on a knowledge base of
rules to discriminate normal from malicious traffic, and are designed to recognize
known attack patterns. MID technology is today’s state of the art but suffers from
structural drawbacks: the set of rules is liable to inconsistencies, hence continuous
updating is required to incorporate unseen attack patterns. On the other hand, AID
systems tend to model ‘normal’ traffic patterns and generate alerts when they detect
events that deviate from normal profiles. AID can support time-zero detection of



novel attack strategies but, to achieve satisfactory performances, the anomaly-based
approach requires consistent modeling of normal traffic. Thus detection accuracy is a
critical issue of AID systems that may result in a relatively high rate of false positives,
and computational intelligence can tackle such a drawback [1].

A connectionist approach fits the anomaly-detection framework especially because
it allows an IDS to develop empirically. In supervised methods [1-3], intrusion detec-
tion is tackled as a binary classification problem (i.e., normal vs. abnormal traffic).
These methods attain quite accurate results. However, the need for data labeling in the
set-up phase and the continuous evolution of attack types often lead to very expensive
training. Unsupervised methods for anomaly detection [1, 4-6] extract features from
traffic data and apply unlabelled learning methods. The goal is to identify, in the fea-
ture space, the significant regions that support the distribution of normal traffic; out-
liers mark abnormal activities. Unsurprisingly, supervised methods outperform unsu-
pervised approaches at identifying known attacks [1]; by contrast, the latter ones
prove more robust when coping with unknown patterns in a dynamic scenario, and
therefore have been chosen as the scientific baseline for the present work.

The research presented in this paper adopts a slightly different approach, in which
an IDS operates as an aiding tool to the network manager, and unsupervised methods
serve to drive a compact visualization of the traffic evolution. The system assists the
network manager in detecting anomalies by performing two tasks: 1) the analysis of
network traffic, and 2) a synthetic visualization of the traffic progress on a 2-D dis-
play, which provides a convenient interface. Auto-Associative Back-Propagation
(AABP) neural networks [7] are entrusted with the mapping of raw traffic data into
the intuitive, visual format. During the training process, the neural network is supplied
with a set of unlabeled feature vectors extracted from packets, and learns to compress
these data irrespectively of the nature (normal/malicious) of the contingent traffic
situation. At run time, the IDS feeds the trained network with the current feature vec-
tor and obtains a two-dimensional representation of data in which abnormal, poten-
tially malicious situations become apparent.

The experimental campaign to verify the method’s effectiveness addressed Simple
Network Management Protocol (SNMP) traffic, mainly because SNMP is one of the
most vulnerable services [8]. The tests involved a dataset previously used for unsu-
pervised analysis [5] and proved the reliability of the proposed approach.

2 Visual Inspection of Traffic in Modern IDS’s

The network-based IDS embeds three different modules. The packet-processing mod-
ule maps the monitored traffic packets into a set of numerical features, ¢, spanning a
multidimensional vector space, f. The AID module compresses feature vectors into a
two-dimensional rendering, 0, of the network traffic. Finally, the visualization module
presents the analysis outcomes to the network manager in a traffic display device.

The AID module is the crucial core of the overall IDS. That component is fed with
n-dimensional feature vectors, fi. These vectors are assembled by the packet-
processing module, which associates numerical features with network packets. The
AID output is a compact two-dimensional representation, 0, of network traffic, which



retains important information about the traffic progress and provides a powerful tool
for further visual inspection. The overall visualization-based approach strictly relies
on a useful support to the network manager, in facilitating the detection of traffic
anomalies.

The computational-intelligence approach proposed in this paper is appealing be-
cause the input-output relationship between feature vectors and display representation
can be learned empirically and does not need an a-priori analytical formulation of the
observed domain. The crucial advantage is that the outlier-detection method does not
require any a-priori analytical formulation of the underlying phenomenon. In princi-
ple, any unsupervised method applies to the involved representation process, and in-
deed Self-Organizing Maps [4] and Vector Quantization-based methods [6] have had
a considerable success in supporting IDS technology. Auto-Associative Back-
Propagation (AABP) neural networks represent an intriguing unsupervised alternative
to those models, especially in its non-linear formulation [7]. In the framework pro-
posed here, AABP neural networks operate as ‘smart compression’ tools and support
the crucial task of mapping raw traffic data into a 2-D space.

3 AABP Neural Networks for Dimensionality Reduction

3.1 Back-Propagation Networks

A neural network-based device can be viewed as a mapping box configured by a set
of parameters (‘weights’), which should be adjusted so as to reproduce a given input-
output relationship as accurately as possible. The weight values can be learned em-
pirically; hence the mapping tool does not need any a-priori analytical formulation of
the observed phenomenon.

MultiLayer Perceptrons (MLPs) [9] support the mapping task by a set of nonlinear
units (‘neurons’) arranged into a layered structure. Each neuron transforms its own
(weighted) inputs by a sigmoidal function o(r); such a nonlinearity is crucial because
sigmoidal networks can support arbitrary mappings [10]. A typical MLP includes
three layers (input, ‘hidden’, output), and associates an input vector, Xxe R°, with an
output vector, yeSRQ, computed as:
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where Nj, is the depth of the sigmoid series expansion, and the coefficients W={w, w'}
are the weights for the interconnections between the two upper layers. Those weights,
W, are adjusted empirically so that the network best reproduces the desired (X, Y)
mapping over a given training set. The classical cost function measuring the mapping
distortion is the mean square error, Ey, between the desired response (‘target’), for a
given input vector and the actual network output. Thus, the network-training process
is formulated as an optimization problem expressed as
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where t® is the desired output for the s-th training vector, X®, and n is the number of
training pairs (X%, t®). The Back-Propagation (BP) algorithm [9] is a powerful tool
for training (2), hence MLPs are often called ‘Back-Propagation’ networks. BP tack-
les the learning problem (2) by a stochastic gradient descent over the weight space.

3.2 Auto-Associative Back-Propagation Networks

Auto-Associative BP networks constitute an unsupervised variant of the general MLP
model, in which the desired outputs coincide with the network inputs: t = X. Forcing
the network to replicate the training sample distribution aims at a reduction in dimen-
sionality, as the hidden layer is typically smaller that the input/output ones. At run-
time, an AABP network associates each input vector with the ‘coding’ values com-
puted by the hidden neurons; these mapping outputs support the (lossy) transforma-
tion from the input space into a lower-dimensional representation.

A three-layer AABP network implements a mapping that is affine to Principal
Component Analysis (PCA) [7]. Quite in view of this equivalence, the resulting map-
ping might suffer from the same drawbacks affecting PCA-like representations, such
as a remarkable sensitivity to outliers in the training set.

The NonLinear Principal Component Analysis (NLPCA) architecture (Fig. 1) in-
volved a sophisticated model of AABP and was proposed to tackle that issue [7].
Alike conventional three-layer AABP, the output layer imposes the input values as
targets and a hidden layer still supports a dimensionality reduction. The crucial differ-
ence from classical AABP lies in the compression/reconstruction sections, each in-
cluding an additional layer of neurons and thus leading to a five-layer network.
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Fig. 1. A NonLinear Auto-Associative Back-Propagation network includes five layers.



The NLPCA architecture retains the universal approximation ability of Back-
Propagation networks [10], and still adheres to the principle of unsupervised training.
The run-time use of the resulting network, after training completion, is equivalent to
the use of a three-layer AABP structure, as the mapping outputs of the middle ‘cod-
ing’ layer provide the low-dimensional representation of each input vector.

On the other hand, the increase in representation power conveyed by the NLPCA
augmentation is remarkable. The lower half of the network, denoted as the ‘compres-
sion section’, actually embeds a complete three-layer BP network, and therefore bene-
fits from the universal capabilities predicted by theory [10]. The problem, of course,
is that no one knows in advance the N target values that should be imposed to the
lower section of the network for learning the compression task. The trick in the
NLPCA approach is that those target values are imposed implicitly by forcing the
network to reconstruct the original sample in the upper section. Thus the ‘reconstruc-
tion” section is symmetrical with respect to the compression section, in order to yield
equivalent, universal (inverse) mapping capabilities.

The main advantage is that the compressed representation does not relate to any
linear model (as was the case for PCA), but stems instead from a mostly general in-
ternal representation that is learned empirically. On the other hand, the complexity of
the augmented model is apparent, and the weight-tuning process might require sophis-
ticated training techniques due to the large number of free parameters. In summary,
NLPCA techniques seem to fit those domains for which 1) a nonlinear representation
is required to best encompass the observed empirical phenomenon, and at the same
time, 2) a considerable number of empirical samples is available.

4 AABP-based IDS for Anomaly Detection in SNMP Traffic

4.1 SNMP Protocol

The present IDS technology considered traffic anomalies within the Simple Net-
work Management Protocol (SNMP), which is a part of the Transmission Control
Protocol/Internet Protocol (TCP/IP) protocol suite. SNMP is an application-layer pro-
tocol for the exchange of management information between devices. This protocol
enables network administrators to drive network performance and is used to control
network elements such as routers, bridges and switches. Hence, SNMP data are quite
sensitive and liable to potential attacks [8]. Two different types of threats were con-
sidered, namely 1) SNMP port scanning (attempts to locate open ports for SNMP ser-
vice on a machine), and 2) MIB information transfer. The Management Information
Base (MIB) is a collection of information about a managed device, including sensitive
data such as network and router configurations. SNMP accesses MIB objects, hence
protecting a network from malicious MIB information transfer is crucial.



4.2 Feature Extraction

The eventual network-based IDS for the detection of SNMP anomalous traffic is
structured as shown in Fig. 2. The “packet processing” component generates feature
vectors f; by working out information contained in the packet header. Then, the AID
module exploits AABP neural network to generate a two-dimensional representation,
0, of the network traffic by starting from the n-dimensional space defined by the fea-
ture set ¢. Thus, first an offline training phase uses empirical data to set the configura-
tion of weight quantities for the AABP. Then, the eventual neural system is used to
process the feature vectors generated at run-time and to feed the visual display.

The design of the feature set ¢ is indeed a crucial issue that has been thoroughly
addressed in the literature [11]. It has been proved that timestamp, source and address
port, destination and address port, and protocol uniquely identify a connection [11].
When dealing with Transmission Control Protocol (TCP) traffic, additional features
may be required (e.g. to track connection state [11]); instead, User Datagram Protocol
(UDP) traffic can be effectively characterized by a reduced feature set [5].

In the present research, networks packet are characterized by using the set of fea-
tures that already proved to be effective for detection of anomalous SNMP traffic [5].
The set of four features that are extracted from packets contribute to build up the neu-
ral-network input vector, fe R*; these features can be listed as follows:

e Protocol ID: an integer number that identifies the protocol of the packet;

e Source port: the port number of the device that sent the packet;

e Destination port: the port number of the target host, i.e. the host to which the
packet is sent;

o Size: the packet size (in Bytes).

As such, at the output of the “packet processing” module the network traffic is

mapped in a four-dimensional feature space.
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Fig. 2. Structural schema of the neural-based anomaly detection and IDS functioning.

5 Experimental Results

The proposed AABP-based IDS has been tested on the data set used in [5]. Since
SNMP relies on User Datagram Protocol (UDP) as a transport protocol, the data sam-
ple contained network packets captured from UDP traffic as transport layer and IP as
network layer. A total of 5866 patterns were involved in the experiment; anomalous
traffic of the type discussed in Sec. 4 covered a share of 1% of the whole dataset.
Network packets were characterized by a four-dimensional feature set (i.e., Protocol



ID, Source Port, Destination Port and Size). Thus, the AID module was trained to
map such a four-dimensional space into a two-dimensional space for an intuitive
visualization of the traffic progress.

MLP theory does not provide any established design criterion to dimension the
hidden layers, hence the present research adopted a practical approach [12], mainly
thanks to its simplicity and proved effectiveness. Thus, in the experiments, the AABP
configuration included 30 nodes in the hidden layers (coding and reconstruction); the
number of coding neurons in the middle layer clearly was Ny = 2. Thus the overall
AABP networks exhibited a (4 — 30 — 2 — 30 — 4) layered topology.

Figure 3 a) presents the results obtained by the middle-layer AABP mapping. The
coordinate axes give the outputs of the two neurons in the coding layer, while each
marker denotes a network packet. The compressed representation of the input vectors
rendered the original network traffic visually; the graph highlighted two quite appar-
ent anomalies, since most of the data were represented along almost vertical patterns
whereas two smaller groups of data followed a different direction. The unsupervised
representation clearly did not give any indication about the nature of those traffic pat-
terns, but correctly pointed out them as anomalous situations.
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Fig. 3. AABP compression performance on SNMP traffic.

To verify the mapping of the obtained results, Figure 3b) augments the above 2-D
visual representation by including time information, and by associating different
markers with the actual packet nature: normal dots indicate normal traffic, whereas
circles denote anomalous traffic. Such information was introduced a posteriori for
post-analysis, and never entered either the AABP training or the IDS run-time opera-
tion. The graph confirmed that the two groups of abnormal data highlighted in the
unsupervised analysis did in fact comprise packets that were to be classified as mali-
cious traffic, and the timing progression of the visual display clearly demonstrates the
effectiveness in outlier detection.



6 Conclusions

The paper presented a network-based IDS supporting a powerful 2-D visualization
of network traffic. The IDS has been designed to support the network manager in de-
tecting traffic anomalies by embedding a synthetic visualization of the traffic analysis
on a 2-D display.

The proposed method exploited a connectionist approach to tackle the crucial issue
of the effective representation of network traffic on a two-dimensional domain. The
major result of the present research lies in showing that AABP neural networks can
rep-resent a valuable tool for addressing such task. Indeed, two important aspects
make the AABP-based approach interesting: 1) the set up of AID model follows an
unsupervised paradigm, and 2) the AABP network can implement universal nonlinear
approximation.
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