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Abstract. Statistical re-sampling techniques have been used extensively and 
successfully in the machine learning approaches for generations of classifier 
and predictor ensembles. It has been frequently shown that combining so called 
unstable predictors has a stabilizing effect on and improves the performance of 
the prediction system generated in this way. In this paper we use the re-
sampling techniques in the context of a topology preserving map which can be 
used for scale invariant classification, taking into account the fact that it models 
the residual after feedback with a family of distributions and finds filters which 
make the residuals most likely under this model. This model is applied to 
artificial data sets and compared with a similar version based on the Self 
Organising Map (SOM). 

1   Introduction 

Topographic map formation is an organizing principle in the mammalian cerebral 
cortex. It consists of an orderly topographical arrangement of motor and sensory 
neurons with similar response properties across the cortical surface. There is an 
experimental evidence of the existence of cortical maps in the brain, and some 
examples have been identified in the visual cortex, somatosensory cortex and the 
auditory cortex.  

The most typical example of an artificial topographic map formation is the Self-
Organising Map (SOM) [1], [2], [3]. SOM is composed of a discrete array of L nodes 
arranged on an N-dimensional lattice and it maps these nodes into D-dimensional data 
space while maintaining their ordering. The dimensionality, N, of the lattice is 
normally less than that of the data. With the SOM, all data in a partition is quantised 
to a single point, and the combined effect of all of the vector-quantising nodes is to 
give a globally non-linear representation of the data set. Typically, the array of nodes 
is one or two-dimensional, with all nodes connected to the N inputs by an N-
dimensional weight vector. 

Another example of a topographic mapping algorithm is the Maximum Likelihood 
Scale Invariant Map (MLSIM) [4], [5], [6]. It is similar model to a Self-Organising 
Map (SOM) [3] but in this case training is based on the use of a particular Exploratory 
Projection Pursuit (EPP) model [7], [8] called Maximum Likelihood Hebbian 
Learning (MLHL) Network [6], [9]. The competitive learning and a neighbourhood 
function are then used in a similar way as with the SOM. 
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Competitive learning based networks are inherently instable, due to the nature of 
their learning algorithm. That means that even running the same algorithm, under the 
same learning conditions several times can give quite different results. To try to 
minimize the effect of this instability several methods are being studied. One of the 
most popular is the bagging technique [10]. This technique consists of constructing 
several different classifiers of the same type and combining their outputs. To train 
each one of the classifiers, a different subset of the training data is used, so a bit of 
diversity is included in the ensemble. 

Tests on real and simulated datasets using classification and regression trees and 
subset selection in linear regression show that bagging can give substantial gains in 
accuracy. The vital element is the instability of the classifying method. It has been 
observed that if perturbing the learning set can cause significant changes in the 
classifier decisions, the bagging can improve accuracy [11], [12], [13]. 

In this paper the instability of individual MLSIMs and potential for improvement 
of the performance using ensembles of classifiers are exploited by utilising bagging 
like combination approaches and MLSIM weight initialisation procedures described 
in the following sections. 

2   Bagging  

The term "bagging" refers to the union of two other words: “bootstrapping” and 
“aggregating” [10]. The first one refers to the way the inputs are extracted from the 
dataset used for training the predictor(s). The second refers to the fact that, instead of 
a unique one, a set or aggregation of predictors should be constructed. The aggregated 
predictor is potentially much more powerful than any individual predictor trained on 
the same data. 

This technique, utilized in this study to improve the classifying capacity of certain 
topography preserving maps, is based on statistical re-sampling theory. The 
description of this "bootstrap aggregating" or "bagging" technique can be found in 
[10] and a version of bagging will be exploited in this paper in the context of topology 
preserving maps. 

When dealing with classification trees for instance, this technique has been 
employed to generate n subsets of the main dataset under analysis through re-
sampling with replacement and training individual decision trees on such re-sampled 
subsets. This permits to generate n classifiers which are most often combined by 
simple majority voting of their decisions [11], [12]. 

In our case, the idea is to employ the bagging like technique in combination with 
the MLSIM training carried out on several re-sampled subsets of the original training 
set. Once the multiple versions of MLSIM are generated the ensemble output is 
computed by simple voting procedure [14], [15]. 

3   Maximum Likelihood Scale Invariant Maps 

Maximum Likelihood Scale Invariant Map (MLSIM) [4], [5] is an extension of the 
Scale Invariant Map (SIM) [16] based on the application of the Maximum Likelihood 
Hebbian Learning (MLHL) [6], [9]. 
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As mentioned earlier an MLSIM is a regular array of nodes arranged on a lattice. 
Competitive learning and a neighbourhood function are used in a similar way as with 
the SOM. The input data (x) is fed forward to the outputs yi in the usual way. After 
selection of a winner, the winner, c, is deemed to be firing (yc=1) and all other outputs 
are suppressed (yi = 0, ci ≠∀ ). 

The winner’s activation is then fed back through its weights and this is subtracted 
from the inputs to calculate the error or residual e as shown in Eq. 1. 

)1(, =⋅−= ccc yyWxe  (1) 

Following this, the Maximum Likelihood Hebbian Learning is used to update the 
weights of all nodes in the neighbourhood of the winner which can be expressed as in 
Eq. 2. 

c
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By giving different values to p [6], [9], the learning rule is optimal for different 
probability density functions of the residuals. hci is the neighbourhood function as in 
the case of the SOM and Nc is the number of output neurons. Finally, η represents the 

learning rate. 
While training of a SOM relies on iteratively selecting a winner stimulated by the 

inputs, and updating the weights, in the case of the MLSIM, the weights of the 
winning node are fed back as inhibition at the inputs, and then, MLH learning is used 
to update the weights of all nodes in the neighbourhood of the winner as explained 
above. 

4   MLSIM Ensembles 

As explained before we intend to apply bagging in combination with MLSIM with the 
main objective of improving the classification performance of the ensemble of 
MLSIMs in comparison to individual MLSIM and some other topology preserving 
maps i.e. SOM.  

4.1   Training the MLSIM Ensemble 

When constructing MLSIM ensemble, first a subset of data is randomly drawn from 
the training dataset and used to train only one of the networks. For the next trained 
network the process is repeated. Thus, the networks of the ensemble are trained using 
slightly different datasets, giving as a result the desired diversity. 

In our investigations we have conducted three distinctive procedures for 
constructing the ensemble of MLSIMs related to the initialisation of weights in the 
trained individual MLSIMs which have had a significant effect on the performance. 

In the first approach we have trained several MLSIMs separately with completely 
random initialisation of the weights. However due to the random initialisation of the 
weights it was very difficult to compare the results of individual output neurons from 
different networks. In order to remedy this problem a more controlled way of setting 
the initial weights was required. 
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Our next step was to initialize the weights of several neurons of each network 
according to the first and second Principal Components of the training dataset in order 
to initiate all the networks within the constructed ensemble in a similar manner, but 
still maintaining a certain degree of independence (in a similar way it is done in [17]). 
To obtain these two first Principal Components (PCs), we have applied a PCA 
ensemble described in one of our previous papers [18]. Specifically, the weights of 
the first (1) and the middle (n/2) neurons were initiated to the values representing the 
first principal component, while the weights of the neurons situated in positions (n/4) 
and ((3*n)/4) (with n being the number of neurons in the network) were initiated with 
the values representing the second principal component. This procedure has been 
applied to all the networks in the ensemble.  

The first and second PCs are orthogonal, so the mentioned neurons (labelled as 1, 
n/2, n/4 and (3*n)/4) are going to be initially located forming a kind of cross, along 
the two PCs as it can be seen in Fig. 1. This initialization has been performed 
deliberately in this way as it is known that MLSIM weights are commonly distributed 
forming a circular shape [4], [5], [16]. 

Additional benefit of such coordinated initialisation of the weights is the fact that 
the results of all individual networks are much easier to compare by visual inspection, 
as the networks tend to update their weights in a similar way. 

 

Fig. 1. Initialization of the MLSIM weights along the first two PCs 

Although it is not critical in the examined context, in the third approach to weights 
initialisation we have tried to force even more of a commonality to the ensemble.  
This has been carried out mainly having in mind a possible future study of 
combination at the model rather than a decision level [13], [19] and also to make the 
networks even more easily comparable by visual inspection. In order to do so, we use 
the final weights obtained after training one network to initiate the next. The first 
trained network of the ensemble was initialized with the Principal Components as 
explained before, while the following ones were initiated with the final weights of 
their corresponding predecessors. In this way, the set of networks is quite more 
“compact”, although it keeps its diversity element by using different bootstrap 
samples of the dataset used to train them. 
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The results showed below have been obtained by using this last initialisation and 
training procedure. 

4.2   Testing the Classification 

We have tested the effectiveness of the classification made by our proposed model 
using a similar semi-supervised technique as the one described in [17] and in 
combination with a classical ten-fold cross validation. 

We randomly divide the input dataset into ten subsets and perform training and 
testing process ten times. Each time we iterate over this main algorithm we select a 
different part of the input dataset as a testing dataset, while the other nine parts are 
used for training. In this way all data were used to train and test the ensemble. At the 
end, we average the testing results obtained in the ten tests to achieve a final 
classification accuracy result. 
 Each of the ten times we perform the previously explained “outer loop”, we take 
three steps. 

1. Training. In this case the ensemble of MLSIMs is trained using the novel 
technique explained in section 4.1. We use the 9/10 of data considered as training 
data in the current iteration. 

2. Labelling of output neurons. As MLSIMs use an unsupervised learning technique 
this step consists of presenting again the training dataset to the recently trained 
ensemble in order to label the output neurons with the most consistently recognised 
class label. As we know which class each of the training data belongs to through 
the given class label, by presenting the training data to the ensemble, we will 
consider that the output neuron is specialized in recognizing data from that class if 
it responded to training samples from that class as a winner in a majority of the 
cases. 

3. Testing. In this step we present to the ensemble of MLSIMs the other 1/10 of data 
that was left out of the training process. The testing dataset is also labelled with its 
corresponding class labels, so we can compare the class the ensemble classifies a 
testing sample as with its real/given class label. In this way a measure of the 
accuracy of the ensemble can be obtained. To decide to which class an input 
belongs to, the MLSIM ensemble performs a majority voting among its composing 
MLSIMs [15]. The input is presented to each network individually, each one finds 
the winner neuron for that input and gives as an answer the class that winner 
neuron is supposed to recognize better (as determined in step 2). The ensemble 
collects the answers from all its composing networks and returns the answer that 
was repeated the largest number of times (i.e. in the majority of the cases). 

5   Data Set and Results 

In order to test the performance of our model in a dataset where it is supposed to do 
best [16] we have generated a radial dataset. It is composed of six normal 
distributions of 2 dimensions disposed in a radial way. Their centres are situated in 
points (3,2), (1,4), (-2,4), (-3,1), (-2,-4) and (1,-2) respectively. The number of 
samples corresponding to each distribution is as follows: 50, 100, 70, 50, 20  and  100.  
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Fig. 2. Samples of the radial artificial data used in this study. 

 

Fig. 3. Ten SOMs trained on the bagged 
data. The weights of the first one were 
initialized to the Principal Components of 
the dataset. The following ones were 
initialized to the final weights of its 
predecessor. 

 

Fig. 4. Ten MLSIMs trained on the bagged 
data. The weights of the first one were 
initialized to the Principal Components of the 
dataset. The following ones were initialized to 
the final weights of its predecessor. 

We have also included several outlier points to compare the results of different 
classification models when they are or are not present. 

Fig. 3 and Fig. 4 show the results of training the ensembles of ten SOMs [17] and 
ten MLSIMs, respectively. As it can be seen the SOM ensemble tries to expand and 
cover the whole dataset range by forming a kind of inverted ‘S’, while the MLSIM 
ensemble does the same thing by using a circular form. In this particular case of a 
radial form dataset, the second approach should give better results, as the second form 
fits better the form of the considered dataset. 

This difference in the form the two ensembles try to approximate to the data is 
mainly due to the training algorithm used (particularly the weights update) [3], [4], 
[5], [16] but also because of the initialization of the weights of the trained networks, 
as explained in section 4.1.  

We have applied three classification models to the above described data set 
(including and without outliers). As expected the MLSIM ensemble model obtains 
better results than the single MLSIM and the SOM ensemble models, without and 
with outliers in the data set, as can be seen in Table 1 and Table 2. In the  
case of a single MLSIM, the variation between  the  best  and  worse  accuracy  results 
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Table 1. Classification accuracy of three different models applied to the data set from Fig. 2. 
The minimum, maximum and average accuracy from 10-fold cross validation testing runs are 
shown in the table. All the experiments were performed without the 20 outlier points. 

Accuracy of the Model (without outliers) 
 min max average 

Single MLSIM 81.28% 86.15 % 83.58% 
Ensemble (10 MLSIMs) 86.15% 88.2% 87.02% 
Ensemble (10 SOM) 80.76 % 86.41 % 83.11% 

Table 2. Classification accuracy of three different models applied to the data set from Fig. 2. 
The minimum, maximum and average accuracy from 10-fold cross validation testing runs are 
shown in the table. All the experiments were performed including 20 outlier points. 

Accuracy of the Model (including outliers) 
 min max average 

Single MLSIM 75.36% 83.17 % 79.6 % 
Ensemble (10 MLSIMs) 82.19% 86.34% 84.15% 
Ensemble (10 SOM) 79.20 % 85.6 % 82.86% 

(for dataset without outliers), is almost 5%, meaning that the model exhibit certain 
instability.  This issue is even easier to be seen, in the case when outliers (i.e. 
mislabelled data) are present in the studied data set. The difference in this case is 
close to 8%. In the case of the model presented in this study, the MLSIM ensemble, 
we can see that the difference in both cases is smaller than in the case of a single one. 
It is around 2% for the case without outliers present, and around 4% when outliers are 
present. 

For comparison purposes, we have applied an ensemble version of a SOM [17]. In 
the first case, when no outliers are present, the difference is less than 6%, and above 
6% with outliers in the data set.  

All these experiments have demonstrated how the MLSIM ensemble performs 
better than a single MLSIM model and an SOM ensemble version, in the case of 
radial data sets. 

6   Conclusions 

In this study we have applied a statistical re-sampling method for creating ensembles 
of classifiers based on a topology preserving model, MLSIM, trained in an 
unsupervised manner. We have studied and compared different ways to initialise the 
centres of individual MLSIMs and proposed an approach based on utilising Principal 
Components Analysis and sequential initialisation of subsequent MLSIMs within 
created ensemble.  

We have compared the novel ensemble model with a SOM ensemble version and 
showed how our model improved the results obtained by the SOM when using radial 
data sets.  
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This study shows how the use of an ensemble version of an MLSIM improves the 
single model providing it with more stability and accuracy. 

Future work will also investigate these ensemble methods on a range of artificial 
and real data sets, and the application of other viable classifier combining techniques 
such as the one known as bumping. 
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