
E. Corchado et al. (Eds.): IDEAL 2006, LNCS 4224, pp. 1434 – 1442, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Maximum Likelihood Topology Preserving Ensembles

Emilio Corchado1, Bruno Baruque1 and Bogdan Gabrys2

1 Department of Civil Engineering. University of Burgos. Spain
escorchado@ubu.es, bbaruque@ubu.es

2 Computational Intelligence Research Group. Bournemouth University. United Kingdom
bgabrys@bournemouth.ac.uk

Abstract. Statistical re-sampling techniques have been used extensively and
successfully in the machine learning approaches for generations of classifier
and predictor ensembles. It has been frequently shown that combining so called
unstable predictors has a stabilizing effect on and improves the performance of
the prediction system generated in this way. In this paper we use the re-
sampling techniques in the context of a topology preserving map which can be
used for scale invariant classification, taking into account the fact that it models
the residual after feedback with a family of distributions and finds filters which
make the residuals most likely under this model. This model is applied to
artificial data sets and compared with a similar version based on the Self
Organising Map (SOM).

1 Introduction

Topographic map formation is an organizing principle in the mammalian cerebral
cortex. It consists of an orderly topographical arrangement of motor and sensory
neurons with similar response properties across the cortical surface. There is an
experimental evidence of the existence of cortical maps in the brain, and some
examples have been identified in the visual cortex, somatosensory cortex and the
auditory cortex.

The most typical example of an artificial topographic map formation is the Self-
Organising Map (SOM) [1], [2], [3]. SOM is composed of a discrete array of L nodes
arranged on an N-dimensional lattice and it maps these nodes into D-dimensional data
space while maintaining their ordering. The dimensionality, N, of the lattice is
normally less than that of the data. With the SOM, all data in a partition is quantised
to a single point, and the combined effect of all of the vector-quantising nodes is to
give a globally non-linear representation of the data set. Typically, the array of nodes
is one or two-dimensional, with all nodes connected to the N inputs by an N-
dimensional weight vector.

Another example of a topographic mapping algorithm is the Maximum Likelihood
Scale Invariant Map (MLSIM) [4], [5], [6]. It is similar model to a Self-Organising
Map (SOM) [3] but in this case training is based on the use of a particular Exploratory
Projection Pursuit (EPP) model [7], [8] called Maximum Likelihood Hebbian
Learning (MLHL) Network [6], [9]. The competitive learning and a neighbourhood
function are then used in a similar way as with the SOM.

 Maximum Likelihood Topology Preserving Ensembles 1435

Competitive learning based networks are inherently instable, due to the nature of
their learning algorithm. That means that even running the same algorithm, under the
same learning conditions several times can give quite different results. To try to
minimize the effect of this instability several methods are being studied. One of the
most popular is the bagging technique [10]. This technique consists of constructing
several different classifiers of the same type and combining their outputs. To train
each one of the classifiers, a different subset of the training data is used, so a bit of
diversity is included in the ensemble.

Tests on real and simulated datasets using classification and regression trees and
subset selection in linear regression show that bagging can give substantial gains in
accuracy. The vital element is the instability of the classifying method. It has been
observed that if perturbing the learning set can cause significant changes in the
classifier decisions, the bagging can improve accuracy [11], [12], [13].

In this paper the instability of individual MLSIMs and potential for improvement
of the performance using ensembles of classifiers are exploited by utilising bagging
like combination approaches and MLSIM weight initialisation procedures described
in the following sections.

2 Bagging

The term "bagging" refers to the union of two other words: “bootstrapping” and
“aggregating” [10]. The first one refers to the way the inputs are extracted from the
dataset used for training the predictor(s). The second refers to the fact that, instead of
a unique one, a set or aggregation of predictors should be constructed. The aggregated
predictor is potentially much more powerful than any individual predictor trained on
the same data.

This technique, utilized in this study to improve the classifying capacity of certain
topography preserving maps, is based on statistical re-sampling theory. The
description of this "bootstrap aggregating" or "bagging" technique can be found in
[10] and a version of bagging will be exploited in this paper in the context of topology
preserving maps.

When dealing with classification trees for instance, this technique has been
employed to generate n subsets of the main dataset under analysis through re-
sampling with replacement and training individual decision trees on such re-sampled
subsets. This permits to generate n classifiers which are most often combined by
simple majority voting of their decisions [11], [12].

In our case, the idea is to employ the bagging like technique in combination with
the MLSIM training carried out on several re-sampled subsets of the original training
set. Once the multiple versions of MLSIM are generated the ensemble output is
computed by simple voting procedure [14], [15].

3 Maximum Likelihood Scale Invariant Maps

Maximum Likelihood Scale Invariant Map (MLSIM) [4], [5] is an extension of the
Scale Invariant Map (SIM) [16] based on the application of the Maximum Likelihood
Hebbian Learning (MLHL) [6], [9].

1436 E. Corchado, B. Baruque and B. Gabrys

As mentioned earlier an MLSIM is a regular array of nodes arranged on a lattice.
Competitive learning and a neighbourhood function are used in a similar way as with
the SOM. The input data (x) is fed forward to the outputs yi in the usual way. After
selection of a winner, the winner, c, is deemed to be firing (yc=1) and all other outputs
are suppressed (yi = 0, ci ≠∀).

The winner’s activation is then fed back through its weights and this is subtracted
from the inputs to calculate the error or residual e as shown in Eq. 1.

)1(, =⋅−= ccc yyWxe (1)

Following this, the Maximum Likelihood Hebbian Learning is used to update the
weights of all nodes in the neighbourhood of the winner which can be expressed as in
Eq. 2.

c
p

cccii NiWWsignhW ∈∀−−⋅⋅=Δ − ,||)(1eeη with different values of p (2)

By giving different values to p [6], [9], the learning rule is optimal for different
probability density functions of the residuals. hci is the neighbourhood function as in
the case of the SOM and Nc is the number of output neurons. Finally, η represents the

learning rate.
While training of a SOM relies on iteratively selecting a winner stimulated by the

inputs, and updating the weights, in the case of the MLSIM, the weights of the
winning node are fed back as inhibition at the inputs, and then, MLH learning is used
to update the weights of all nodes in the neighbourhood of the winner as explained
above.

4 MLSIM Ensembles

As explained before we intend to apply bagging in combination with MLSIM with the
main objective of improving the classification performance of the ensemble of
MLSIMs in comparison to individual MLSIM and some other topology preserving
maps i.e. SOM.

4.1 Training the MLSIM Ensemble

When constructing MLSIM ensemble, first a subset of data is randomly drawn from
the training dataset and used to train only one of the networks. For the next trained
network the process is repeated. Thus, the networks of the ensemble are trained using
slightly different datasets, giving as a result the desired diversity.

In our investigations we have conducted three distinctive procedures for
constructing the ensemble of MLSIMs related to the initialisation of weights in the
trained individual MLSIMs which have had a significant effect on the performance.

In the first approach we have trained several MLSIMs separately with completely
random initialisation of the weights. However due to the random initialisation of the
weights it was very difficult to compare the results of individual output neurons from
different networks. In order to remedy this problem a more controlled way of setting
the initial weights was required.

 Maximum Likelihood Topology Preserving Ensembles 1437

Our next step was to initialize the weights of several neurons of each network
according to the first and second Principal Components of the training dataset in order
to initiate all the networks within the constructed ensemble in a similar manner, but
still maintaining a certain degree of independence (in a similar way it is done in [17]).
To obtain these two first Principal Components (PCs), we have applied a PCA
ensemble described in one of our previous papers [18]. Specifically, the weights of
the first (1) and the middle (n/2) neurons were initiated to the values representing the
first principal component, while the weights of the neurons situated in positions (n/4)
and ((3*n)/4) (with n being the number of neurons in the network) were initiated with
the values representing the second principal component. This procedure has been
applied to all the networks in the ensemble.

The first and second PCs are orthogonal, so the mentioned neurons (labelled as 1,
n/2, n/4 and (3*n)/4) are going to be initially located forming a kind of cross, along
the two PCs as it can be seen in Fig. 1. This initialization has been performed
deliberately in this way as it is known that MLSIM weights are commonly distributed
forming a circular shape [4], [5], [16].

Additional benefit of such coordinated initialisation of the weights is the fact that
the results of all individual networks are much easier to compare by visual inspection,
as the networks tend to update their weights in a similar way.

Fig. 1. Initialization of the MLSIM weights along the first two PCs

Although it is not critical in the examined context, in the third approach to weights
initialisation we have tried to force even more of a commonality to the ensemble.
This has been carried out mainly having in mind a possible future study of
combination at the model rather than a decision level [13], [19] and also to make the
networks even more easily comparable by visual inspection. In order to do so, we use
the final weights obtained after training one network to initiate the next. The first
trained network of the ensemble was initialized with the Principal Components as
explained before, while the following ones were initiated with the final weights of
their corresponding predecessors. In this way, the set of networks is quite more
“compact”, although it keeps its diversity element by using different bootstrap
samples of the dataset used to train them.

1438 E. Corchado, B. Baruque and B. Gabrys

The results showed below have been obtained by using this last initialisation and
training procedure.

4.2 Testing the Classification

We have tested the effectiveness of the classification made by our proposed model
using a similar semi-supervised technique as the one described in [17] and in
combination with a classical ten-fold cross validation.

We randomly divide the input dataset into ten subsets and perform training and
testing process ten times. Each time we iterate over this main algorithm we select a
different part of the input dataset as a testing dataset, while the other nine parts are
used for training. In this way all data were used to train and test the ensemble. At the
end, we average the testing results obtained in the ten tests to achieve a final
classification accuracy result.
 Each of the ten times we perform the previously explained “outer loop”, we take
three steps.

1. Training. In this case the ensemble of MLSIMs is trained using the novel
technique explained in section 4.1. We use the 9/10 of data considered as training
data in the current iteration.

2. Labelling of output neurons. As MLSIMs use an unsupervised learning technique
this step consists of presenting again the training dataset to the recently trained
ensemble in order to label the output neurons with the most consistently recognised
class label. As we know which class each of the training data belongs to through
the given class label, by presenting the training data to the ensemble, we will
consider that the output neuron is specialized in recognizing data from that class if
it responded to training samples from that class as a winner in a majority of the
cases.

3. Testing. In this step we present to the ensemble of MLSIMs the other 1/10 of data
that was left out of the training process. The testing dataset is also labelled with its
corresponding class labels, so we can compare the class the ensemble classifies a
testing sample as with its real/given class label. In this way a measure of the
accuracy of the ensemble can be obtained. To decide to which class an input
belongs to, the MLSIM ensemble performs a majority voting among its composing
MLSIMs [15]. The input is presented to each network individually, each one finds
the winner neuron for that input and gives as an answer the class that winner
neuron is supposed to recognize better (as determined in step 2). The ensemble
collects the answers from all its composing networks and returns the answer that
was repeated the largest number of times (i.e. in the majority of the cases).

5 Data Set and Results

In order to test the performance of our model in a dataset where it is supposed to do
best [16] we have generated a radial dataset. It is composed of six normal
distributions of 2 dimensions disposed in a radial way. Their centres are situated in
points (3,2), (1,4), (-2,4), (-3,1), (-2,-4) and (1,-2) respectively. The number of
samples corresponding to each distribution is as follows: 50, 100, 70, 50, 20 and 100.

 Maximum Likelihood Topology Preserving Ensembles 1439

Fig. 2. Samples of the radial artificial data used in this study.

Fig. 3. Ten SOMs trained on the bagged
data. The weights of the first one were
initialized to the Principal Components of
the dataset. The following ones were
initialized to the final weights of its
predecessor.

Fig. 4. Ten MLSIMs trained on the bagged
data. The weights of the first one were
initialized to the Principal Components of the
dataset. The following ones were initialized to
the final weights of its predecessor.

We have also included several outlier points to compare the results of different
classification models when they are or are not present.

Fig. 3 and Fig. 4 show the results of training the ensembles of ten SOMs [17] and
ten MLSIMs, respectively. As it can be seen the SOM ensemble tries to expand and
cover the whole dataset range by forming a kind of inverted ‘S’, while the MLSIM
ensemble does the same thing by using a circular form. In this particular case of a
radial form dataset, the second approach should give better results, as the second form
fits better the form of the considered dataset.

This difference in the form the two ensembles try to approximate to the data is
mainly due to the training algorithm used (particularly the weights update) [3], [4],
[5], [16] but also because of the initialization of the weights of the trained networks,
as explained in section 4.1.

We have applied three classification models to the above described data set
(including and without outliers). As expected the MLSIM ensemble model obtains
better results than the single MLSIM and the SOM ensemble models, without and
with outliers in the data set, as can be seen in Table 1 and Table 2. In the
case of a single MLSIM, the variation between the best and worse accuracy results

1440 E. Corchado, B. Baruque and B. Gabrys

Table 1. Classification accuracy of three different models applied to the data set from Fig. 2.
The minimum, maximum and average accuracy from 10-fold cross validation testing runs are
shown in the table. All the experiments were performed without the 20 outlier points.

Accuracy of the Model (without outliers)
 min max average

Single MLSIM 81.28% 86.15 % 83.58%
Ensemble (10 MLSIMs) 86.15% 88.2% 87.02%
Ensemble (10 SOM) 80.76 % 86.41 % 83.11%

Table 2. Classification accuracy of three different models applied to the data set from Fig. 2.
The minimum, maximum and average accuracy from 10-fold cross validation testing runs are
shown in the table. All the experiments were performed including 20 outlier points.

Accuracy of the Model (including outliers)
 min max average

Single MLSIM 75.36% 83.17 % 79.6 %
Ensemble (10 MLSIMs) 82.19% 86.34% 84.15%
Ensemble (10 SOM) 79.20 % 85.6 % 82.86%

(for dataset without outliers), is almost 5%, meaning that the model exhibit certain
instability. This issue is even easier to be seen, in the case when outliers (i.e.
mislabelled data) are present in the studied data set. The difference in this case is
close to 8%. In the case of the model presented in this study, the MLSIM ensemble,
we can see that the difference in both cases is smaller than in the case of a single one.
It is around 2% for the case without outliers present, and around 4% when outliers are
present.

For comparison purposes, we have applied an ensemble version of a SOM [17]. In
the first case, when no outliers are present, the difference is less than 6%, and above
6% with outliers in the data set.

All these experiments have demonstrated how the MLSIM ensemble performs
better than a single MLSIM model and an SOM ensemble version, in the case of
radial data sets.

6 Conclusions

In this study we have applied a statistical re-sampling method for creating ensembles
of classifiers based on a topology preserving model, MLSIM, trained in an
unsupervised manner. We have studied and compared different ways to initialise the
centres of individual MLSIMs and proposed an approach based on utilising Principal
Components Analysis and sequential initialisation of subsequent MLSIMs within
created ensemble.

We have compared the novel ensemble model with a SOM ensemble version and
showed how our model improved the results obtained by the SOM when using radial
data sets.

 Maximum Likelihood Topology Preserving Ensembles 1441

This study shows how the use of an ensemble version of an MLSIM improves the
single model providing it with more stability and accuracy.

Future work will also investigate these ensemble methods on a range of artificial
and real data sets, and the application of other viable classifier combining techniques
such as the one known as bumping.

Acknowledgments

This research has been supported by the MCyT project TIN2004-07033 and the
project BU008B05 of the JCyL.

References

1. Kohonen, T. Self-Organization and Associative Memory. Springer-Verlag, Heidelberg,
Germany, 1984.

2. Kohonen, T. Barna, G and Chrisley R. Statistical Pattern Recognition with Neural
Networks. In Proceeding of International Joint Conference of Neural Networks (pp. 61-
88), IEEE Press, 1988.

3. Kohonen, T. The Self-Organizing Map. In Proceedings of the IEEE 78 (pp. 1464-1480),
1990.

4. Corchado, E. and Fyfe, C. Maximum Likelihood Topology Preserving Algorithms. In
Proceedings of the U.K. Workshop on Computational Intelligence, Birmingham, UK,
2002.

5. Corchado, E. and Fyfe C. The Scale Invariant Map and Maximum Likelihood Hebbian
Learning. International Conference on Knowledge-Based & Intelligent Information &
Engineering System, IOS Press, 2002.

6. Corchado, E., MacDonald, D., Fyfe C., Maximum and Minimum Likelihood Hebbian
Learning for Exploratory Projection Pursuit. Data Mining Knowledge Discovery 8(3):
203-225 (2004).

7. Friedman J., Tukey. J.: A Projection Pursuit Algorithm for Exploratory Data Analysis.
IEEE Transaction on Computers, Vol. 23 (1974) 881-890.

8. Hyvärinen A.: Complexity Pursuit: Separating Interesting Components from Time Series.
Neural Computation, Vol. 13(4) (2001) 883-898.

9. Fyfe, C. and Corchado, E. Maximum likelihood Hebbian rules. ESANN (European
Symposium on Artificial Neural Networks), ISBN 2-930307-02-1, 2002.

10. Breiman, L. Bagging Predictors. Machine Learning, 24 (pp. 123–140), 1996.
11. Ruta, D. and Gabrys, B. A Theoretical Analysis of the Limits of Majority Voting Errors

for Multiple Classifier Systems, Pattern Analysis and Applications, vol. 5, pp. 333-350,
2002.

12. Schapire, R.E; Freud, Y; Bartlett, P. and Lee, W.S. Boosting the margin: a new
explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–
1686, 1998.

13. Gabrys, B. Learning Hybrid Neuro-Fuzzy Classifier Models From Data: To Combine or
not to Combine? Fuzzy Sets and Systems, vol. 147, pp. 39-56, 2004.

14. Kuncheva, L. Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience, 2004.

1442 E. Corchado, B. Baruque and B. Gabrys

15. Ruta, D. and Gabrys, B. Classifier Selection for Majority Voting, Special issue of the
journal of information fusion on Diversity in Multiple Classifier Systems, vol. 6, issue 1,
pp. 63-81, 1 March 2005.

16. Fyfe, C. A Scale Invariant Map. Network: Computation in Neural Systems, 7 (pp 269-
275), 1996.

17. Petrakieva, L. and Fyfe, C. Bagging and Bumping Self-organising Maps. Computing and
Information Systems, 2003.

18. Gabrys, B., Baruque, B. and Corchado, E. Outlier Resistant PCA Ensembles. To appear in
the proceedings of the International Conference on Knowledge-Based & Intelligent
Information & Engineering System, KES'2006, 2006.

19. Gabrys, B., Combining Neuro-Fuzzy Classifiers for Improved Generalisation and
Reliability, Proceedings of the Int. Joint Conference on Neural Networks, (IJCNN’2002) a
part of the WCCI’2002 Congress, ISBN: 0-7803-7278-6, pp. 2410-2415, Honolulu, USA,
May 2002.

	Introduction
	Bagging
	Maximum Likelihood Scale Invariant Maps

	MLSIM Ensembles
	Training the MLSIM Ensemble
	Testing the Classification

	Data Set and Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

