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Abstract. 

This study presents a multiagent architecture aimed at detecting SQL injection attacks, which 

are one of the most prevalent threats for modern databases. The proposed architecture is based 

on a hierarchical and distributed strategy where the functionalities are structured on layers. 

SQL-injection attacks, one of the most dangerous attacks to online databases, are the focus of 

this research. The agents in each one of the layers are specialized in specific tasks, such as data 

gathering, data classification, and visualization. This study presents two key agents under a 

hybrid architecture: a classifier agent that incorporates a Case-Based Reasoning engine 

employing advanced algorithms in the reasoning cycle stages, and a visualizer agent that 

integrates several techniques to facilitate the visual analysis of suspicious queries. The former 

incorporates a new classification model based on a mixture of a neural network and a Support 

Vector Machine in order to classify SQL queries in a reliable way. The latter combines 

clustering and neural projection techniques to support the visual analysis and identification of 

target attacks. The proposed approach was tested in a real-traffic case study and its 
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experimental results, which validate the performance of the proposed approach, are presented 

in this paper. 

Keywords: Intrusion Detection, SQL Injection Attacks, Data Mining, CBR, SVM, 

Neural Networks, Multiagent System 

 

1.  Introduction 

Currently, one of the most dangerous and common threats to databases and Web 

applications is the SQL injection attack. It typically involves malicious modifications of 

the user SQL input either by adding additional clauses or by changing the structure of 

an existing clause [46]. SQL injection enables attackers to access, modify, or delete 

critical information in a database without proper authorization [45]. In spite of being a 

well-known type of attack, the SQL injection remains at the top of the published list of 

security threats [35]. The solutions proposed so far [6], [47], [48], [5], [60], [32], [64] 

seem insufficient to prevent and block this type of attack because these solutions lack 

the learning and adaptation capabilities for dealing with 0-day (previously unseen) 

attacks as well as new or future variations of attacks. Furthermore, the vast majority of 

these solutions are based on centralized mechanisms, with little capacity to work in 

distributed and dynamic environments. 

Taking previous research one step further, this study presents idMAS-SQL (Intrusion 

Detection Based on MAS to Detect and Block SQL Injection), a hybrid solution based 

on a distributed architecture (multiagent system - MAS) [65] capable of detecting and 

blocking SQL Injection Attacks. The philosophy of multi-agent systems makes it 

possible to deal with SQL injection attacks from the perspective of the elements of 

communication, ubiquity and autonomous computation, and from the standpoint of a 

global distributed system. Every component in idMAS-SQL interacts and cooperates to 

achieve a global common goal: the detection and prevention of ongoing intrusions in a 
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database. idMAS-SQL presents a hierarchical organization structured by layers of 

agents, which distributes roles and tasks for the detection and prevention of SQL 

injection attacks. The agents at each level are assigned specific tasks which they can 

execute regardless of their physical location, due to their own capabilities. 

idMAS-SQL has evolved from the SC-MAS architecture [2] which follows the strategy 

of an Intrusion Detection System (IDS) by means of a distributed approach based on the 

idCBR agent capabilities. idCBR agents are a particular type of CBR-BDI agent [3], 

[16] whose internal structure and capacities are based on mental aptitude [33]. These 

agents are characterized by the integration of a CBR (Case-Based Reasoning) 

mechanism [3] in a deliberative BDI Agent. This mechanism provides the agents with a 

greater level of adaptation and learning capability given that CBR systems use past 

experiences to solve new problems [16]. This is very effective for blocking SQL 

injection attacks as the mechanism uses a strategy based on anomaly detection [55], 

modelling the normal/legal SQL queries. 

The main innovations of idMAS-SQL are the incorporation of a new classification 

strategy which is based on Data Mining in idCBR agents, and of an agent with special 

capabilities for the visualization and subsequent analysis of data. idCBR agents are 

specially designed to incorporate a mixture of classification through an Artificial Neural 

Network (ANN) and a Support Vector Machine (SVM). Through the use of this 

mixture, it is possible to take advantage of both strategies in order to classify SQL 

queries in a more reliable way. The use of idCBR agents with advanced capabilities for 

analyzing and predicting SQL attacks is one of the main features of the architecture. 

Furthermore, the incorporation of a visualizer agent provides human experts with a very 

useful tool for analyzing those cases which are classified as suspicious by the idCBR 

agent and which require validation by an expert. The Visualizer Agent is a type of agent 

equipped with advanced capabilities for data visualization through unsupervised 
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projection models. Specifically, it combines a clustering technique for the selection of 

similar requests with a neural model for the reduction of dimensionality, which permits 

visualisation in 2D or 3D.  

The remainder of the paper is structured as follows: Section 2 presents the problem 

that has prompted most of this research work. Section 3 introduces the topic of 

visualization techniques for information security and the projection models applied in 

this study. Section 4 presents the proposed MAS architecture in detail. Section 5 

explains the internal structure of the two most important agents in this architecture. 

Finally, Sections 6 and 7 present the experimental results and conclusions after having 

tested the proposed approach.  

2. SQL Injection Attacks 

An SQL injection attack takes place when a hacker changes the semantic or syntactic 

logic of an SQL text string by inserting SQL keywords or special symbols within the 

original SQL command, executed at the database layer of an application [35]. Different 

attack techniques exist which include the use of SQL Tautologies, Logic errors/Illegal 

Queries, Union Queries and Piggy-back Queries. Other more advanced techniques use 

injections based on interference and alternative codification [35].  

(1) SELECT * FROM tblUsers WHERE id = 1 or 1=1 AND user LIKE "%root%" 

(2) 

SELECT IF( user = 'root', BENCHMARK(1000000,MD5( 'x' )),NULL) 

FROM login declare @q varchar(8000); select @q = 

0x73656c65637420404076657273696f6e; exec(@q). Generating results: ‘select 

@@version' 

The first query bases its strategy on adding an expression that is always true to the 

where-clause of a select statement (tautologies). The second query masks the injection 

by using a type of codification such as ASCII (American Standard Code for Information 

Interchange) or a codification in Hexadecimal format. 
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The cause of SQL injection attacks is relatively simple: an inadequate input validation 

on the user interface. As a result of this attack, a hacker can be responsible for 

unauthorized data handling, retrieval of confidential information, and in the worst 

possible case, taking over control of the application server [35].  

Different strategies have been presented as a solution to the problem of SQL injection 

attacks [35], with special attention given to strategies based on IDSs [6], [47], [48], [5], 

[60], [32], [64]. One approach based on anomaly detection was proposed by [6], 

applying a clustering strategy to group similar queries and isolate queries which are 

considered malicious. The main disadvantage of this approach is its high computational 

overhead which would affect a real-time detection. Kemalis and Tzouramanis propose 

the SQL-IDS (SQL Injection Detection System) [47] which uses security specifications 

to capture the syntactic structure of SQL queries generated by the applications. The 

main limitation of this approach is the computational cost when comparing the new 

query with the predefined structure at runtime. 

In [48] two types of SQL injection attacks are raised: tautology attacks and those based 

on the UNION operator. Through the syntactic analysis of SQL query strings, the data 

of HTTP requests are extracted to be used later in the training phase and to determine 

the threshold to be used in the evaluation phase. Bertino, Kamra and Early [48] propose 

an anomaly detection mechanism applied using data mining techniques. The main 

problem of this approach is finding an adequate threshold to maintain a low rate of both 

false positives and false negatives. Another anomaly-based approach is proposed by 

Robertson, Vigna, Kruegel and Kemmerer [60]. This approach uses generalisation 

techniques to convert suspicious requests within abnormal signatures. These signatures 

are later used to group malicious requests which present similar characteristics. Another 

technique used is characterization, which involves deducing the type of attack 

associated with a malicious request. A low computational overhead is generated; 
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however, it is susceptible to generating false positives. The ID3 algorithm, presented by 

Garcia, Monroy and Quintana [32], proposes the detection of attacks targeted at web 

applications. The ID3 algorithm is used to detect and filter malicious SQL strings. This 

approach presents a significant percentage of incorrect classifications. Valeur, Mutz, 

and Vigna [64] propose the use of anomaly detection through the generation of a series 

of models beginning with a set of recovered queries. At execution time, they monitor 

the applications in order to identify requests which are not associated with the 

aforementioned models. 

3. Visualization for Information Security 

As they are considered a viable approach to information seeking, visualisation 

techniques have been applied to massive datasets for many years [1]. Visual inspection 

of network traffic patterns is presented as an alternative for managing a crucial aspect of 

network monitoring [4] because its chief aim is to provide security personnel with a 

synthetic representation of the network situation. In performing this task, visualisation 

tools can: 

• Assist security personnel in detecting anomalies and potential threats through an 

intuitive display of the progression of network traffic. 

• Deal easily with highly heterogeneous and noisy data such as the data required 

for network monitoring and intrusion detection (ID) [18]. 

• Provide network managers with automated support and motivate their 

effectiveness by taking advantage of the ability of the human eye to extrapolate 

normal traffic patterns and detect anomalies. As stated in [8], "a picture is worth 

a thousand packets" or "a picture is worth a thousand log entries" [54]. 

• Help network managers diagnose performance issues or understand 

communication patterns between nodes.  

• Serve as tools that are complementary to other security mechanisms. 

The monitoring task that detects intrusive or anomalous events can be achieved by 

visualising data at different levels of abstraction: network nodes, intrusion alerts, 

packet-level data, communication content, log files, and so on. In other words, different 

data from various security tools can be visualised. 
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Visualisation tools rely on the human ability to recognize different features and to detect 

anomalies through graphical devices [1]. Human vision can rapidly locate, discover, 

identify, and compare objects; all essential tasks in the network monitoring process, 

considering the overwhelming amount of information and raw traffic data that must be 

processed [8]. 

The underlying operational assumption of this approach is mainly grounded in the 

ability to render high-dimensional traffic data in a consistent yet low-dimensional 

representation. Therefore, security visualisation tools have to map high-dimensional 

feature data into a low-dimensional space for presentation. One of the main assumptions 

of the visualization task in the present study is that neural projection models will prove 

themselves to be satisfactory for the purpose of SQL query visualisation through 

dimensionality reduction, as they previously have been for some other attacks [12, 38]. 

To date, most researches on ID have approached it from a classification standpoint, such 

as [26, 50, 59, 63]. They perform a 2-class classification of network traffic: 

normal/anomalous in anomaly-based ID, and intrusive/non-intrusive in misuse-based 

ID. From a different standpoint, this study proposes visualisation techniques for the 

detection of attacks. It is worth emphasizing that this proposal entails the visualisation 

of SQL queries for detecting attacks (that is, visualisation for ID) and not the 

visualisation of IDS alerts or logs (that is, visualisation of ID) as others have done [44]. 

The visualisation-based approach to ID relies on the following ideas [9]: 

• Anomalous situations can be identified by their "visual signature". Visual 

fingerprints are frequently visible despite the visual noise of background traffic. 

• Some stealthy attacks are resistant to detection by classification-based IDSs, but 

are readily visible using appropriate visualisations. 

• Visualisation techniques require little resources and are remarkably resistant to 

overload caused by high volumes of network traffic. 

• The completeness of visualisation-based IDSs is supposedly higher than that of 

classification-based IDSs when facing 0-day attacks. 

Unlike other security tools, IDSs need to be monitored to make the most of their 

benefits [19]. The huge number of alerts that are usually generated by IDSs (including 

many false positives and negatives) is a hindrance to permanent (24h.) monitoring, 

mainly due to economical costs. Visualisation-based IDSs can ease this task by 

providing an easily understandable snapshot of the network status, thus reducing the 

time needed for ID. 
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Visualisation techniques take advantage of the outstanding capabilities of the human 

visual system to detect patterns and anomalies in visual representations of abstract data 

[52]. Another advantage of visualisation is that it transforms the task of analysing 

network data from a perceptually serial process (by reading textual data) to a 

perceptually parallel process (by presenting more concepts) [25]. Because of this, the 

visualisation approach to ID implies several advantages: 

• Attack visualisation can provide fresh insight into the analysed data, allowing 

the deduction of new hypotheses usually lost in complex analysis [18]. 

Consequently, 0-day attacks can be easily detected. 

• "Visualisation tools need to be designed so that anomalies can be easily flagged 

for later analysis by more experienced analysts" [34]. Visualisation for ID can 

help in training security personnel with no previous experience in security tasks, 

as well as reducing the time spent by more experienced personnel. 

• For effective analysis, network data must be correlated with several variables. 

This requires dealing with highly heterogeneous, complex, and noisy data. The 

visualisation approach simplifies this problem by presenting the traffic situation 

in an intuitive way, as visual images can give perceptual clues to the 

administrators [18]. 

• Attack visualisation can be much faster than other anomaly detection approaches 

[18]. As it also reduces the time and effort of reviewing security logs, it implies 

a great reduction of the time (and hence resources) required for ID. 

Although many ID tools have begun to incorporate advanced graphical user interfaces, 

most of them fail to provide an intuitive and comprehensive visualisation of network 

traffic. To identify intrusions, one has to look for "interesting" structures and for 

"abnormal" or unusual data. Although this process cannot be precisely detailed in a 

general and objective way, "one usually can recognize unusual data when one sees 

them" [53]. 

One of the main drawbacks of the visualisation approach to ID is that even if equipped 

with the "perfect" visualisation technique, security personnel will make mistakes in 

detecting intrusions. This is a consequence of relying on human abilities, which are 

affected by a range of factors such as time pressure, fatigue, boredom, and so on. 

In this study, some statistical and unsupervised neural projection models were applied 

for visualization-based ID of SQL injection attacks. These models are described in the 

following subsections. 
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3.1 Principal Component Analysis 

Principal Component Analysis (PCA) [41], [58] describes the variation in multivariate 

data in terms of a set of uncorrelated variables, in decreasing order of importance, each 

of which is a linear combination of the original variables. Using PCA it is possible to 

find a smaller group of underlying variables that describe the data, with the result that 

the first few components of such a group might explain most of the variation in the 

original data. It should be noted that even if we are able to characterize the data with a 

few variables, it does not mean that an interpretation will ensue. This statistical 

technique may be performed by using connectionist models [56], [61], [29].   

3.2 Exploratory Projection Pursuit 

Exploratory Projection Pursuit (EPP) [27] is a statistical technique for solving the 

complex problem of identifying structure in high-dimensional data. It involves low-

dimensional data projections in which structure is identified by eye and requires an 

index of “interestingness” by which each projection is measured. Subsequently, the data 

is transformed by optimizing this index in order to examine the projections of greatest 

interest in greater detail. From a statistical point of view, the most interesting directions 

are those which are as non-Gaussian as possible. Typical random data set projections 

are usually Gaussian [23], so identification of the most interesting features in the data 

calls for further investigation of these “interesting” directions. As in the case of PCA, 

this statistical technique may be implemented by using connectionist models [43], [42], 

[13], [30].  

While PCA is focused on the identification of the largest variance directions, EPP looks 

for higher order statistics, such as skewness or kurtosis. 

3.3 Curvilinear Component Analysis 

Curvilinear Component Analysis (CCA) [22] is a nonlinear dimensionality reduction 

method. It was developed as an improvement on the Self-Organizing Map (SOM) [49]. 

It tries to circumvent the limitations inherent in some previous linear models such as 

PCA. Its output is not a fixed lattice but a continuous space able to take the shape of the 

submanifold in the dataset (input space). 

The CCA is based on a self-organised neural network performing two tasks: a vector 

quantization of the submanifold, and a nonlinear projection of these quantising vectors 
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toward an output space, providing a revealing view of the way in which the submanifold 

unfolds. Quantization and nonlinear mapping are separately performed by two layers of 

connections. 

In the vector quantization step, the input vectors are forced to become prototypes of the 

distribution by using competitive learning and the regularization method proposed in 

[21]. Thus, this step, which is intended to reveal the submanifold of the input data, 

regularly quantizes the space covered by the data, regardless of the density. Euclidean 

distances between these input vectors are considered, as the output layer has to build a 

nonlinear mapping of the input vectors. 

Since a perfect matching is not possible at all scales when the manifold is "unfolding", a 

weighting function is introduced, yielding the quadratic cost function: 

( ) ( )∑∑
≠

−=
i ij

yijijij YFYXE λ,
2
1 2  (1) 

As regards its goal, the projection part of CCA is similar to other nonlinear mapping 

methods in that it minimizes a cost function based on interpoint distances in both input 

and output spaces. Instead of moving one of the output vectors ( iy ) according to the 

sum of the influences of every other jy , CCA proposes pinning down one of the output 

vectors ( iy ) "temporarily", and moving all other jy  around, disregarding any 

interaction between them. Accordingly, the proposed "learning" rule can be expressed 

as: 

( ) ( )( )
ij

ij
ijijyijj Y

yy
YXYFty

−
−=∆ λα ,  ij ≠∀  (2) 

The main advantages of CCA, in comparison to other methods such as stochastic 

gradient descent or steepest gradient descent, are: 

• The proposed rule ( y∆ ) is much lighter than a stochastic gradient from a 

computational standpoint. 

• The average of the output vector updates is proportional to the opposite of the 

gradient of the cost function ( E ). On the other hand, it can temporarily produce 

increases in E , which eventually allows the algorithm to escape from local 

minima of E . The research in [22] showed that the CCA method implies a 

lower final cost in comparison with gradient methods. 

CCA is able to perform dimensionality reduction and represent the intrinsic structure of 

given input data without any previous knowledge of distribution of the analysed dataset. 
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Compared with other previous projection algorithms, the CCA method is more general, 

reliable, and faster at capturing input data structure. 

3.4 Cooperative Maximum Likelihood Hebbian Learning 

Cooperative Maximum Likelihood Hebbian Learning (CMLHL) is based on the EPP 

neural model called Maximum Likelihood Hebbian Learning (MLHL) [13, 31]. The 

main difference between these two models is that CMLHL includes lateral connections 

[10, 11] derived from the Rectified Gaussian Distribution (RGD) [62]. The RGD is a 

modification of the standard Gaussian distribution in which the variables are 

constrained to be non-negative. More precisely, CMLHL includes lateral connections 

based on the mode of the cooperative distribution that is closely spaced along a 

nonlinear continuous manifold. By including these lateral connections, the resulting 

network can find the independent factors of a dataset in a way that captures some type 

of global ordering in the dataset. 

Considering an N -dimensional input vector x , an N -dimensional output vector y  and 

with ijW  being the weight (linking input thj  to output thi ), CMLHL can be expressed 

as: 

Feed-forward step: 

ixWy
1j

jiji ∀=∑
=

N

,  (3) 

Lateral activation passing: 

( ) ( )[ ]+−+=+ Aybτ(t)yty ii 1  (4) 

where A (described below) is a matrix used to modify the response to the data, and b  is 

the bias parameter 

Feedback step: 

∑
=

∀−=
M

i
iijjj jyWxe

1
,  (5) 

Weight change: 

( ) p
jjiij eesignyW ||..η=∆  (6) 

where η  is the learning rate, τ  is the "strength" of the lateral connections, and p  a 

parameter related to the energy function [10, 13, 31].  
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A  is a symmetric matrix used to modify the response to the data whose effect is based 

on the relation between the distances among the output neurons. It is based on the 

cooperative distribution, but to speed learning up, it can be simplified to: 

( )( )MjijiA ij /2cos),( −−= πδ  (7) 

where ijδ  is the Kronecker delta. 

The application of CMLHL, initially in the field of artificial vision [10, 11], and 

subsequently to other interesting topics [14, 37, 39, 40], has proven that this model can 

successfully perform data visualisation. 

3.5 Multidimensional Scaling 

Multidimensional Scaling (MDS) [17] is a dimensionality reduction technique used for 

representing data. It involves finding a graphic representation in low dimensionality 

which is as close as possible to the original data. Two types of MDS exist: working with 

original values, or using ranges to represent the order of values in place of distances. If 

original magnitudes are used, it is called metric MDS, otherwise, it is denominated non-

metric MDS. Starting with a matrix of distances, the values are sorted, representing a 

connection that indicates which elements are closest. What MDS tries to create is a new 

set of variables which maintain the same order of the initial variables based on a new 

matrix of distances. 

4. idMAS-SQL: A Multi-Agent Architecture to Detect and Block SQL Injection 

Given some of the above mentioned capabilities, a multi-agent solution fits the 

challenge of detecting and blocking SQL-injection attacks. In keeping with this idea, the 

present study proposes the use of a multi-agent architecture, (see Fig. 1) to focus on 

SQL injection attacks. It is based on an innovative approach since there is no known 

architecture with these characteristics for detecting SQL injection attacks. 

The distributed resolution of problems balances the workload, facilitates recovery 

from error conditions, and also avoids centralized traffic. The analysis, classification 
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and decision making capabilities, among others, are distributed throughout several 

layers in the proposed idMAS-SQL architecture, as depicted in Fig. 1. The agents that 

make up the architecture are assigned specific roles to perform their tasks. Moreover, 

the distribution greatly simplifies the capacity to recover from errors or failures because 

if an agent fails, it is immediately replaced without affecting the other agents at the 

same level or in other levels. Additionally, the proposed architecture is based on a 

hierarchical model that reduces the complexity of tasks such as monitoring and 

capturing user requests, classifying user requests, evaluating the final solution, etc. 

Distributing the functionality at each level, while maintaining each level independently, 

allows new changes to be easily adapted. Each level of the architecture houses a 

collection of agents with well-defined roles that allow their tasks and responsibilities to 

be clearly specified. The architecture has been divided into three levels so that the 

specific tasks are assigned according to the degree of complexity. Fig 1 depicts the 

idMAS-SQL architecture with each level and the respective agents. 

 

Fig. 1. idMAS-SQL architecture showing the different layers and their respective agents. 
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idMAS-SQL is presented as an evolution of the SC-MAS architecture [2] that proposed 

a novel strategy to identify and block SQL injection attacks through a distributed 

approach based on the capacities of idCBR agents, which are a particular type of CBR-

BDI agents [15]. As well as the CBR-BDI agents, an agent with visualisation 

capabilities is incorporated to assist the expert in decision making regarding queries that 

are classified as suspicious. To do so, a visualization mechanism is proposed which 

combines clustering techniques and neural models, based on unsupervised learning, to 

reduce dimensionality. 

The different types of agents located at the different levels of the idMAS-SQL 

architecture can be described as: 

• Sniffer. This type of agent is located in the monitoring layer and is responsible for 

capturing datagrams, ordering TCP fragments to extract the request’s SQL string 

and executing a syntactic analysis of the request’s SQL string. There can be more 

than one Sniffer agent depending on the amount of workload. 

• Control-L1. This is one of the agents that execute control and communication 

functions in the lower layers of the architecture. It is located in the monitoring layer, 

and all communication from this layer is administered by the agent. Its functions 

include: receiving data from the Sniffer agent and assigning the Analyzer agent to 

the task of searching for patterns of attacks; reporting to the administration layer the 

detection of any intrusion during the process of comparing attack signatures; and 

supervising the workload of the layer in order to request, from the administration 

layer, the creation or elimination of Sniffer or Analyzer agent requests.   

• Analyzer. This type of agent is located in the classification layer. Its function 

includes matching patterns of known attacks; a database with previously built 

patterns allows this task. There can be more than one Analyzer agent depending on 

the amount of workload. 



15 

• idCBR. This type of agent is also located in the classification layer and is a core 

component of the architecture as it carries out a classification of SQL strings 

through detection anomalies. It integrates a case based reasoning (CBR) mechanism. 

In the reuse phase of the CBR cycle it applies a mixture of neural networks to 

generate a classification (legal, illegal or suspicious). There can be more than one 

idCBR agent depending on the amount of workload. 

• Control-L2. This is the second type of agent for carrying out control and 

communication functions. All of the incoming and outgoing communication of the 

classification layer is administered by the Control-L2 agent. Its functions include: 

receiving processed data from the Monitoring layer and assigning a specific 

classifier agent to execute the task of classification; reporting the detection of 

intrusions to the administration layer once the classification process is completed; 

and supervising the workload of the layer to request, from the administration layer, 

the creation or elimination of requests from the idCBR agents.  

• Visualizer. This agent is the main novelty of the architecture proposed in this 

research. Also located in the Administration layer, this agent facilitates the 

interaction between security personnel and the architecture. It applies different 

projection models for visualizing SQL-related data. Consequently, SQL injection 

attacks can be visually identified. In addition to this function, the Visualizer agent 

dictates the rules and actions for when an intrusion is detected, given that its 

principal task is to block (not execute) queries identified as anomalous. It also 

facilitates the implementation of adjustments in the architectural setup. Finally, it is 

equipped with the ability to run on mobile devices to facilitate the task of 

monitoring. 
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• Manager. This agent is responsible for the evaluation and coordination of the 

overall architectural operation. It administers the directory of the architecture’s 

operative agents through communication with the idCBR agents at each layer.  

The following section provides a detailed description of the two types of key agents in 

intrusion detection.  

5. Agents for Detecting SQL Injection Attacks 

The idCBR and Visualizer agents, presented in this study, interact with other agents 

within the idMAS-SQL architecture. These other agents carry out tasks related to 

message capturing, syntactic analysis, and administration. The idCBR and Visualyzer 

agents execute complementary tasks to determine the reliability of SQL queries.  

The idCBR agent is a type of BDI agent that incorporates a CBR engine. This paradigm 

is based on the idea that similar problems have similar solutions. Thus, a new problem 

is resolved by consulting the case memory to find a similar case which has been 

resolved in the past. 

The Visualizer agent is an agent that is equipped with the capability of visualization, 

which helps the security expert to resolve any user requests that are classified as 

suspicious by the idCBR agent. This agent incorporates projection models used as tools 

to identify and remove correlations between problem variables, which enable us to carry 

out dimensionality reduction, and visualization or exploratory data analysis. In this 

study, some statistical and unsupervised neural projection models, specifically PCA 

[58], CCA [22], CMLHL [10], and MDS [17] were applied. 

Below, the mechanisms incorporated in the internal structures of the idCBR and 

Visualizer agents are presented in detail.  
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5.1 idCBR Agent 

This subsection presents the idCBR agent, with special emphasis on its internal 

structure and the classification mechanism of SQL attacks. This mechanism combines 

the advantages of CBR-BDI systems, such as learning and adaptation, with the 

predictive capabilities of a combination integrated by ANNs and SVMs. The use of this 

combination of techniques is based on the possibility of using two classifiers together to 

detect suspicious queries in the most reliable way possible. 

When working with CBR systems, the key concept is that of “case”. A case is defined 

as a previous experience and is composed of three elements: a description that depicts 

the initial problem; a solution that describes the sequence of actions performed in order 

to solve the problem; and the final state, which describes the state that has been 

achieved once the solution is applied.  

In terms of CBR, the case is composed of elements of the SQL query described as 

follows: (a) Problem Description, which describes the initial information available for 

generating a plan. The problem description consists of: case identification, user session 

and SQL query elements. (b) Solution, which describes the action carried out in order to 

solve the problem description, in this case, prediction models. (c) Final State, which 

describes the state achieved after the solution has been applied. The fields defining a 

case are listed in Table 1. Additionally, the information related to the prediction models 

used is also stored in the Models Memory. 
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Table 1. Structure of the problem definition and solution for SQL query classification. 

Problem description fields Solution fields 

IdCase 
Session 
User 
IP_Address 
Query_SQL 
Affected_table 
Affected_field 
Command_type 
Word_GroupBy 
Word_Having 
Word_OrderBy 
Number_And 
Number_Or 
Number_literals 
Number_LOL 
Length_SQL_String 
Start_Time_Execution 
End_Time_Execution 
Query_Category 

Integer  
Session 
String 
String 
Query_SQL 
Integer 
Integer 
Integer 
Boolean 
Boolean 
Boolean 
Integer 
Integer 
Integer 
Integer 
Integer 
Time 
Time 
Integer 

Idcase 
Classification_Query 

Integer 
Integer 

 

 

 

Fig. 2. CBR cycle and classification mechanism of the idCBR agent. 
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Fig. 2 depicts the different stages applied in the reasoning cycle. To summarize, the 

retrieval stage involves a selection of queries sorted by type and by the memory’s 

classification models. In the reuse phase, an MLP and an SVM [57] are applied 

simultaneously to carry out the prediction of the new query. During learning, the 

memory information regarding the cases and models is updated.  

The different stages of the CBR reasoning cycle associated with the system are 

described as follows. 

• Retrieve: it is divided into two phases, case retrieval and model retrieval. Case 

retrieval is performed by using the Query_Category attribute which retrieves queries 

from the case memory (Cr) which were used for a similar query in accordance with 

attributes of the new case cn. Subsequently, the models for the MLP mlpr and svmr 

associated with the recovered cases are retrieved. The recovery of these memory 

models improves the system’s performance so that the time necessary for the 

creation of models will be considerably reduced, mainly in the case of the ANN 

training. 

• Reuse: it begins with the information of the retrieved cases Cr and the recovered 

models mlpr and svmr. The combination of both techniques is fundamental in 

reducing the rate of false negatives. The inputs of the MLP are: Query_SQL, 

Affected_table, Affected_field, Command_type, Word_GroupBy, Word_Having, 

Word_OrderBy, Numer_And, Numer_Or, Number_literals, Number_LOL, and 

Length_SQL_String. The number of neurons in the hidden layer is 2n+1, where n is 

the number of neurons in the input layer. Finally, there is one neuron in the output 

layer. The sigmoid activation function has been selected for the different layers. 

Taking into account the activation function fj, the calculation of output values is 

given by the following expression: 
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The outputs correspond to rx . As the neurons exiting from the hidden layer of the 

neural network contain sigmoid neurons with values between [0, 1], the incoming 

variables are redefined so that their range falls between [0.2, 0.8]. This 

transformation is necessary because the network does not deal with values that fall 

outside of this range. The outgoing values are similarly limited to the range of [0.2, 

0.8] with the value 0.2 corresponding to a non-attack and the value 0.8 

corresponding to an attack. The network training is carried out through the error 

Backpropagation Algorithm [51]. 

At the same time that the estimation through the use of neuronal networks is 

performed, an estimation is also carried out by the SVM application: a supervised 

learning technique applied to the classification and regression of elements. The 

algorithm represents an extension of nonlinear models [10]. SVM also separates the 

element classes which are not linearly separable. In order to do so, the space of 

initial coordinates is mapped in a high dimensionality space through the use of 

functions. Given that the dimensionality of the new space can be very high, it is not 

feasible to calculate hyperplanes that allow the production of linear separability. To 

do so, a series of non-linear functions called kernels is used. 

Let us consider a set of patterns )},(),...,,(),,{( 2211 mm yxyxyxT =  where ix  is a 

vector of the dimension n. The aim is to convert the elements ix  in a space of high 

dimensionality through the application of a function, in such a way that the set of 

original patterns is converted into the following set 

)}),((),...,),((),),({()( 2211 mm yxyxyxT ΦΦΦ=Φ  that, depending on the selected 
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function )(xΦ , could be linearly separable. To carry out the classification, this 

equation sign is studied [13]: 









+ΦΦ= ∑

=

bxxysignxclass
m

i
kiiik

1
)()()( λ  (9) 

where iλ  is a Lagrange multiplier, iy output value for the ix , b constant. 

The selected kernel function in this problem was polynomial. The values used for 

the estimation are dominated by decision values and are related to the distance from 

the points to the hyperplane. 

Once the output values for the ANN and the SVM are obtained, the mixture is 

performed by a weighted average in function of the error rate of each one of the 

techniques. Before calculating the average, the values are normalized to the interval 

[0, 1]. As SVM provides positive and negative values and those of greater 

magnitude, the calculation could affect the final value in greater measure if it is not 

redimensioned. 

• Revise: for those cases detected as suspicious, with output values determined 

experimentally in the interval [0.35, 0.6], a review by a human expert is performed. 

To facilitate the interaction of the human expert, a sophisticated mechanism based 

on visualization techniques was incorporated in the Administration layer. This 

mechanism allows the security expert to manage suspicious cases with greater 

precision. In cases with queries clearly classified as attacks, these are rejected, and 

the queries clearly classified as legitimate are allowed to run on the database. The 

suspicious queries are rejected and subsequently validated in the revise phase for a 

subsequent execution. 

• Retain: the learning phase updates the information of the new classified case and 

reconstructs the classifiers offline to leave the system available for new 
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classifications. The ANN classifier is reconstructed only when an erroneous 

classification is produced. In the case of a reference to inspection of suspicious 

queries, information and classifiers are updated when the expert updates the 

information. 

5.2 Visualizer Agent 

This section presents an agent especially designed to resolve user requests that have 

been classified as suspicious. Its main function is to complement the classification of 

SQL attacks through visualization facilities. As a result, this agent improves the 

classification performance of the idMAS-SQL agent. 

This agent visualizes all the previously classified queries, highlighting those most 

similar to the new suspicious query. The selection of similar cases is carried out through 

the use of a neuronal Growing Cell Structures (GCS) [28] network, that distributes the 

previously stored cases in meshes and selects the mesh in which the new case is found. 

To visualize the cases (those in the selected mesh), the dimensionality of data is reduced 

by means of a projection model. The information is represented and the associated 

queries are recovered with the retrieved mesh, as shown in Fig. 5. For the purpose of 

facilitating the revise phase, CART [7] is applied to extract the relevant field in the 

probes that have been removed. The information about the fields can help us to 

understand the reasons that queries are classified as legal or illegal.  

6. Experimental Results 

A comprehensive set of experiments was designed and carried out to check the 

proposed approach. As a result, a sample web application with access to a MySQL 5.0 

database was developed. After creating the database, legal queries were sent from the 

designed user interfaces. These requests were filtered to avoid redundancy and only 

legal SQL queries were gathered to generate the dataset. In the case of malicious 

queries, the dispatch of the queries was automated using the agent SQLMAP0.5 [20]. 
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This tool is able to fingerprint an extensive DBMS back-end, retrieve remote DBMS 

databases, usernames, tables, and columns, enumerate entire DBMS, read system files, 

and much more, taking advantage of web application programming security flaws that 

lead to SQL injection vulnerabilities. Although the SQLMap 0.5 tool generates a wide 

variety of malicious queries by using different strategies of attack, these queries were 

also filtered to remove any similar SQL string previously stored.  

For the classification process and application of the projection models, the SQL strings 

were syntactically analyzed, storing the fields in the dataset as listed in Table 2. 

Table 2. Dataset fields obtained from the syntactic analysis of SQL queries. 

Field Description Type (Values) 

Affected_table Number of tables affected by the query Int (n tables) 

Affected_field Number of fields affected by the query Int (n fields) 

Command_type Type of declared command in the query Int (0-3) 

Word_GroupBy Number of repetitions of Group By clause  Int (n clause) 

Word_Having Number of repetitions of Having clause  Int (n clause) 

Word_OrderBy Number of repetitions of Order By clause  Int (n clause) 

Number_And Number of repetitions of the And Operator Int (n ops) 

Number_Or Number of repetitions of the Or Operator Int (n ops) 

Number_literals Number of Literal in the SQL string Int (n literals) 

Number_LOL Number of declared Expressions Literal-Operator-

Literal in the SQL String 

Int (n exprs) 

Length_SQL_String Length of the SQL String Int (n chars) 

 

To analyze the successful rates, different classifiers were applied: Bayesian Network, 

Naive Bayes, AdaBoost M1, Bagging, DecisionStump, J48, JRIP, LMT, Logistic, 

LogitBoost, MultiBoosting AdaBoost, OneR, SMO, and Stacking. The software used 

for the experiments includes the libraries provided by WEKA [36] and the R script 

language. This software was used to compare the different classifiers, whose names 

come from those listed in the libraries. These different classifiers were applied to 705 

previously classified queries (437 legal, 268 attacks). The consecutive process for 

carrying out the output test was the following: select one of the cases, extract it from the 

set, construct the model starting from the remaining cases and classify the extracted 
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case. This process is repeated for each one of the cases and techniques in order to 

analyze each query without it being used to build the model. The final result of the 

classification can be seen in Table 3. 

Table 3. Percentage of hits for the different classifiers. 

Method Success rate Method Success rate Method Success rate 

BayesNet 90.50 Naive Bayes 94.47 AdaBoostM1 94.33 

Bagging 97.02 DecisionStump 84.82 J48 97.73 

JRIP 98.16 LMT 98.30 Logistic 97.59 

LogitBoost 96.45 MultiBoostAB 94.47 OneR 88.23 

SMO 97.16 Stacking 61.99 idCBR 99.01 

 

As shown in Table 3, the highest-performance is obtained by the idCBR, which has a 

success rate of 99.01. Figure 3 shows the ROC curves for the methods presented in table 

3. As shown in Figure 3, the idCBR method presents the highest area under the curve 

(AUC), and can be consequently considered to be the method that provides the best 

results. 

 

Fig. 3. ROC curves for the different classifiers shown in Table 3. 
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To analyze the reuse phase in depth, a mixture was carried out between all of the pairs 

of methods displayed in Table 3. The results are shown in Table 4, which is divided into 

two halves by the principal diagonal. The upper part of the principal diagonal contains 

the percentage of decisions for the combination of methods of the column file. In these 

values, estimations of the dubious cases are included. The part corresponding to the 

lower diagonal contains the percentage of cases that can be considered as suspicious 

among those classified. In the combination, it is clear that there is no method that 

exceeds the number of decisions of the proposed procedure: 99.01. The number of cases 

detected as suspicious, with an output between the values of 0.35 and 0.6, was limited to 

6. 

Table 4. Mixture of experts with combinations of the different classifiers. The upper values of the principal diagonal 
correspond to the percentage of elements successfully classified taking suspicious cases into account; the lower 

values to the percentage of cases detected as suspicious.  
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BayesNet   93.48 94.47 95.89 87.66 98.01 98.16 97.16 96.60 96.03 93.90 88.23 97.16 89.79 

NaiveBayes 3.40  95.18 96.03 93.62 98.01 98.30 97.30 96.74 96.03 95.46 88.23 97.16 94.04 

AdaBoostM1 5.82 3.97  96.17 94.04 98.01 98.16 97.59 96.45 96.03 94.04 88.23 97.16 95.18 

Bagging 2.55 2.13 0.85  96.45 98.01 98.16 97.59 97.87 97.02 96.45 88.23 97.16 97.30 

DecisionStump 9.36 10.50 11.49 12.91  98.01 98.16 97.45 97.59 94.89 93.33 88.23 97.16 84.82 

J48 2.84 2.55 2.41 0.71 13.76  98.16 97.87 98.30 98.01 98.01 98.01 98.30 97.73 

JRip 3.55 3.26 2.55 1.13 14.18 1.13  97.87 98.30 98.16 97.87 90.92 98.16 98.16 

LMT 4.68 4.40 3.12 2.55 15.46 1.56 1.42  97.45 97.87 97.02 95.32 97.16 98.30 

Logistic 5.53 3.12 2.41 1.70 14.04 0.71 1.56 1.70  97.73 96.17 88.23 97.16 96.74 

LogitBoost 6.24 2.41 2.41 1.56 12.48 0.71 0.99 2.13 2.55  96.17 88.23 97.16 96.74 

MultiBoostAB 5.11 4.96 0.57 2.41 11.06 3.40 3.97 4.96 3.55 2.98  88.23 97.16 94.04 

OneR 8.51 8.23 6.10 8.23 18.44 10.35 11.06 11.63 9.50 4.40 10.07  96.74 88.23 

SMO 2.13 1.99 0.85 0.43 13.48 1.70 2.41 2.41 0.14 0.28 2.70 10.64  97.16 

Stacking 9.22 3.40 9.22 3.40 52.06 0.43 0.00 0.85 3.40 10.92 5.11 0.00 0.00  

  

To evaluate the significance of the different techniques presented in Table 4, a cross 

validation was established following the Dietterich's 5x2- Cross-Validation Paired t-

Test algorithm [24]. The value 5 in the algorithm name represents the number of 

replications of the training process, and value 2 is the number of sets into which the 

global set is divided. Thus, for each technique, the global dataset S was divided into two 

groups S1 and S2 as follows: 21 SSS ∪=  and φ=∩ 21 SS . The learning and estimation 
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stages were then carried out. This process was repeated 5 times for each technique, and 

included the following steps: the classifier was trained using S2 and was then used to 

classify S2 and S1. In a second step, the classifier was trained using S1 and was then 

used to classify S2 and S1. The results obtained are shown in Table 5, where the columns 

represent the success rate obtained for S1, S2 (Ri-A trained with S1) and S1, S2 (Ri-B 

trained with S2) for each i repetition. The rows of Table 5 show the different classifiers 

previously listed in Table 3. 

Table 5. Number of errors obtained using the training and cross validation 5x2. 

 R1-A R1-B R2-A R2-B R3-A R3-B R4-A R4-B R5-A R5-B  

 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 Average 

BayesNet  319 317 313 316 322 303 317 325 317 312 317 321 318 316 318 318 314 315 312 303 316.25 

NaiveBayes 333 333 334 332 336 328 329 334 333 333 334 332 333 334 334 331 330 333 334 332 332.62 

AdaBoostM1 331 331 335 325 342 332 329 321 331 328 339 339 330 335 341 331 333 331 341 342 332.80 

Bagging 345 345 346 344 349 341 340 342 344 345 346 342 340 339 348 344 345 343 347 345 343.93 

DecisionStump 294 304 304 294 309 289 310 304 304 294 294 304 297 301 301 297 296 302 302 296 299.90 

J48 345 342 351 341 349 343 340 339 347 340 345 342 348 342 349 339 347 340 348 344 344.01 

JRip 348 344 338 335 349 336 336 341 346 344 346 344 342 340 346 340 343 342 344 344 342.27 

LMT 352 347 353 336 352 341 345 344 345 343 353 343 349 341 353 343 351 341 350 345 346.35 

Logistic 343 343 347 338 347 336 339 347 342 343 344 340 342 344 346 340 345 344 344 345 342.82 

LogitBoost 344 343 338 331 343 340 338 340 336 336 342 338 340 336 343 342 342 339 342 343 339.60 

MultiBoostAB 335 335 338 335 309 289 325 312 312 310 335 335 310 304 334 336 337 336 323 324 323.03 

OneR 301 321 321 301 315 291 312 310 312 302 310 312 312 310 310 312 311 311 311 311 309.58 

SMO 342 344 339 340 341 342 339 342 339 342 343 340 340 341 344 341 342 339 342 341 341.15 

Stacking 208 229 229 208 217 220 220 217 219 218 218 219 226 211 211 226 218 219 219 218 218.36 

idCBR 348 348 342 352 352 343 350 347 347 346 346 350 347 350 339 351 349 346 346 349 347.28 

 

Once the results presented in Table 5 were obtained, a study on the significance of the 

different classification techniques was performed by applying the Mann-Whitney U-

test. It was a non-parametric test in which it is not necessary to make assumptions on 

the data distribution, as in the t-test. The test determines two values: H0 and H1. H0 

shows whether the data in both groups presents the same distribution, whereas H1 

determines if there is difference in the distribution of the error distance data. The upper 

diagonal of table 6 shows the level of significance for the statistical test, so that if the 

value obtained is lower than the level of significance (commonly 0.05), we can 
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conclude that the methods are different. In the upper diagonal of Table 6 it is possible to 

observe those methods in which differences were detected (in bold), and those in which 

no differences were detected (in red). Clearly, the error distribution for the idCBR 

approach differs from the error distribution for the rest of the methods, from which we 

can conclude that there does exist a difference with all but one (LMT) of the methods 

considered.  

The analysis of the cross validation is completed using the Dietterich's 5x2- Cross-

Validation Paired t-Test [24]. The results obtained are shown in the lower diagonal of 

Table 6. It is possible to observe that the results are very similar to those previously 

shown in the upper diagonal (Mann-Whitney U-test). In this case, the only technique 

that provides results similar to idCBR (i.e., the difference is not significant) is LMT (the 

value obtained is higher than the level of significance: α ). 

Table 6. Mann-Whitney and Paired t-Test test for the significance of the differences. The upper diagonal contains the 
Mann-Whitney U-Test and the lower diagonal contains the t-Test. 
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BayesNet   0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.054 0.001 0.000 0.000 0.000 

NaiveBayes 0.000  0.913 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.796 0.000 0.000 0.000 0.000 

AdaBoostM1 0.000 0.555  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.087 0.000 0.000 0.000 0.000 

Bagging 0.000 0.000 0.000  0.000 0.935 0.200 0.153 0.300 0.000 0.000 0.000 0.001 0.000 0.001 

DecisionStump 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

J48 0.000 0.000 0.000 0.946 0.000  0.315 0.095 0.463 0.003 0.000 0.000 0.017 0.000 0.009 

JRip 0.000 0.000 0.000 0.038 0.000 0.098  0.022 0.703 0.026 0.000 0.000 0.101 0.000 0.000 

LMT 0.000 0.000 0.000 0.017 0.000 0.005 0.000  0.039 0.000 0.000 0.000 0.000 0.000 0.506 

Logistic 0.000 0.000 0.000 0.114 0.000 0.191 0.480 0.001  0.003 0.000 0.000 0.015 0.000 0.000 

LogitBoost 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001  0.000 0.000 0.324 0.000 0.000 

MultiBoostAB 0.019 0.012 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.003 0.000 0.000 0.000 

OneR 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 

SMO 0.000 0.000 0.000 0.000 0.000 0.004 0.141 0.000 0.018 0.041 0.000 0.000  0.000 0.000 

Stacking 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000 

idCBR 0.000 0.000 0.000 0.004 0.000 0.021 0.000 0.509 0.001 0.000 0.000 0.000 0.000 0.000  
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The information presented in Table 5 is graphically represented with a boxplot in Figure 

4. It is possible to observe that the variability of the data is low for the idCBR 

technique, while the other techniques (e.g., LMT) present a high variability. 

Additionally, idCBR presents a higher success rate (although this fact cannot be 

determined statistically) due to the variability of the LMT algorithm. The best success 

rate is that of the idCBR method, as seen in Figure 4. The global average, without 

distinguishing between the test and the validation, is 692.5 (98.23%) for the LMT 

method and 694.6 (98.54%) for the proposed idCBR method. The number of successful 

classifications of the idCBR method increases as the memory of cases grows, while the 

success rate for the LMT remains constant, as shown in Table 3. 

 

Fig. 4. Boxplots containing the information about the success rate for each technique considering the information 
shown in Table 5. 

The same analysis was repeated using only the data in Table 5 representing 

classification errors in the test sets. In this case H0, although close, was not rejected 

when comparing LMT to idCBR because the value obtained was 0.08. This fact 

indicates that the idCBR has a better generalization capacity than the LMT technique. 

Similarly, if the only errors selected were those related to the test, then the result 
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obtained from applying the paired t-test was 0.13, which will not allow us to determine 

the difference between both methods, although it is the closest to being rejected. 

To compare the execution times, we proceeded to perform a classification for 70,500 

requests for each technique shown in Table 3. The results obtained are shown in Table 

7. This table shows the total execution time (in seconds) for the 70,500 requests and the 

average execution time in milliseconds. 

Table 7. Comparison of the execution time for the different techniques. 

 Total Execution Time (s) Average Execution Time (ms) 
BayesNet  3.24 0.04595745 
NaiveBayes 3.48 0.0493617 
AdaBoostM1 2.78 0.03943262 
Bagging 2.69 0.03815603 
DecisionStump 2.64 0.03744681 
J48 2.63 0.03730496 
JRip 2.63 0.03730496 
LMT 3.68 0.05219858 
Logistic 3.1 0.04397163 
LogitBoost 3.15 0.04468085 
MultiBoostAB 3.2 0.04539007 
OneR 3.13 0.04439716 
SMO 3.58 0.05078014 
Stacking 2.9 0.04113475 
idCBR 5.35 0.07588652 

 

In order to validate the revise phase, we proceeded to recover one of the suspicious 

queries and to carry out a visualization of the results. The query recovered is shown 

below:  

select id_cliente, count(*) from client_order, client where id_client = id and id = 'test' AND '1' = '2' and date 

between '2008-05-05 00:00:00' and '2008-05-05 23:23:23' group by id having city = 'Madrid' order by id 

 

This query presents suspicious information because it contains a literal '1'='2' that could 

be considered an attack. As this content does not make sense in a legal query, it could 

be interpreted as an attack. The output value obtained by the idCBR agent was 0.541, 

therefore it will be classified as an attack, as originally proposed.  
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To carry out the revision, the two previously mentioned different techniques of 

dimensionality reduction were compared. Fig. 5 shows the visualizations provided by 

the different techniques, which represent the selected query together with the most 

similar queries. The stored queries are depicted in different colours: the sample query 

(detailed above) is shown in blue, legal queries in green, attacks in red, and non-

recovered queries in grey. 

  

a) PCA projection b) MDS projection 

 
 

c) MLHL projection d) CCA projection 
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e) CMLHL projection 

 

Fig. 5. Representation of queries during the revise phase, provided by different dimensionality techniques. 

 

As can be seen, the dimensionality reduction that provides the best results is that of 

CMLHL, since the retrieved similar cases are closer. Furthermore, it is easier for the 

naked eye to detect clusters with this procedure than with the others applied. Based on 

the results in Fig. 5.e, as provided by CMLHL, the query highlighted in blue can be seen 

closest to the queries in red, from which it is possible to conclude that the query is 

probably an attack. 

Once it is confirmed that the recovered queries results are significant with regards to 

their proximity in the projection to the suspicious query, the queries are displayed so 

that the revision can be carried out. In this case, 39 similar queries were recovered. Two 

examples of the recovered queries are:  

select id_cliente, count(*) from client_order, client where id_client = id and id = 'test' and date 
between '2008-05-05 00:00:00' and '2008-05-05 23:23:23' group by id having city = 'Madrid' 
order by id 
 
select id_cliente, count(*) from client_order, client where id_client = id and id = 'test' AND 
ORD(MID((SELECT 4 FROM information_schema.TABLES LIMIT 0, 1), 2, 1)) > 1 AND '1'='1' and 
date between '2008-05-05 00:00:00' and '2008-05-05 23:23:23' group by id having city = 
'Madrid' order by id 
 

The first corresponds to a legal query while the second corresponds to an attack. In 

order to facilitate the revise phase, knowledge extraction is carried out to identify the 

variables that determine the relevant attributes that establish their classification. To this 

end, CART was applied, as it allows the selection of important attributes according to 

the rules shown in Fig. 6. Each one of the rows corresponds to a tree branch that 

contains the number of assigned nodes, the condition, the number of nodes correctly 

classified, the misclassified nodes, and the class they belong to. The probability of each 
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one of the classes being assigned to the nodes (legal C0, illegal C1) is indicated within 

parentheses (Fig. 6). 

n= 39  

node), split, n, loss, yval, (yprob) 

      * denotes terminal node 

1) root 39 11 C0 (0.71794872 0.28205128)   

  2) Number_literals< 4.5 30  2 C0 (0.93333333 0.06666667) * 

  3) Number_literals>=4.5 9  0 C1 (0.00000000 1.00000000) * 

Fig. 6. Rules of the Decision Tree generated by CART. 

As can be seen, the field Number_literals is what determines if the queries are attacks 

within the recovered results in the revise phase. Therefore, if the presence of literals in 

the query is detected as an amount that could be reviewed as an attack, the dubious 

query displayed in Fig. 5 could be classified as an attack.  

7. Conclusions and Future Work 

The combination of different AI and Data-Mining paradigms allows the development of 

a hybrid IDS with characteristics such as the capacity for learning and reasoning, and 

flexibility and robustness, which make the detection of SQL injection attacks possible. 

The proposed idMAS-SQL architecture is capable of detecting these abnormal 

situations with lower error rates than other existing techniques. The idCBR agent is 

selected because of a mixture which allows the efficient detection of different types of 

queries, as shown in Table 2, and because it improves the results proposed by the 

mixture of other experts, as shown in Table 3. The idCBR agent incorporates both a 

neural network, which makes an estimation of the most atypical cases compared with 

those existing in the database, and the SVM, which behaves effectively for similar 

queries; hence the efficiency of both techniques. 
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The idCBR agent also provides a decision mechanism, based on CART, which 

facilitates the review of suspicious queries through the selection of similar queries and 

their visualization through projection models in the Visualizer agent. Visualization 

facilitates the expert's decision making through a graphical representation of similar 

queries. Different existing techniques for performing dimensionality reduction have 

been analyzed, and the conclusions demonstrate that CMLHL displays clearer 

projections which allow a simpler interpretation of results. Furthermore, the technique 

of knowledge extraction enables the recovery of relevant information which permits the 

grouping of queries, as shown in the example in Section 6.  

The proposed architecture in general and the idCBR and Visualizer agents in particular, 

could easily be applied to the detection of other application-layer intrusions. Thus, 

further research will focus on the adaptation of idMAS-SQL to cover any potential 

vulnerabilities. To do so, the key features of the packets involved in the target intrusions 

must be selected, and relevant data must be gathered by the Sniffer agent. There is no 

need to redefine the techniques of idCBR and Visualizer agents, as the generalization 

capability of the comprised neural models allows its application to new problems. 

Future work will be also based on the comparison to other neural and ensemble models 

for the visualization of anomalous cases.  
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