
1

idMAS-SQL: Intrusion Detection Based on MAS to Detect and Block
SQL Injection through Data Mining

Cristian I. Pinzón1, Juan F. De Paz2, Álvaro Herrero3, Emilio Corchado2, Javier Bajo2
and Juan. M. Corchado2

1Faculty of Computer Systems Engineering, Technological University of Panama
Building Nº3, Campus «Dr. Víctor Levi Sasso»,

Universidad Tecnológica Ave. Panamá City, Panamá
cristian_ivanp@usal.es

2Departamento de Informática y Automática, Universidad de Salamanca,
Plaza de la Merced, s/n, 37008, Salamanca, Spain
{fcofds, escorchado, jbajope, corchado}@usal.es

3Department of Civil Engineering, University of Burgos,
C/ Francisco de Vitoria s/n, 09006, Burgos, Spain

ahcosio@ubu.es

Corresponding Author:
 Name: Javier Bajo
 Tlfn: +34 639771985
 Fax: +34 923277101
 Email: jbajope@upsa.es
 Address: Compañía 5, 37002, Salamanca, Spain

Abstract.

This study presents a multiagent architecture aimed at detecting SQL injection attacks, which

are one of the most prevalent threats for modern databases. The proposed architecture is based

on a hierarchical and distributed strategy where the functionalities are structured on layers.

SQL-injection attacks, one of the most dangerous attacks to online databases, are the focus of

this research. The agents in each one of the layers are specialized in specific tasks, such as data

gathering, data classification, and visualization. This study presents two key agents under a

hybrid architecture: a classifier agent that incorporates a Case-Based Reasoning engine

employing advanced algorithms in the reasoning cycle stages, and a visualizer agent that

integrates several techniques to facilitate the visual analysis of suspicious queries. The former

incorporates a new classification model based on a mixture of a neural network and a Support

Vector Machine in order to classify SQL queries in a reliable way. The latter combines

clustering and neural projection techniques to support the visual analysis and identification of

target attacks. The proposed approach was tested in a real-traffic case study and its

2

experimental results, which validate the performance of the proposed approach, are presented

in this paper.

Keywords: Intrusion Detection, SQL Injection Attacks, Data Mining, CBR, SVM,

Neural Networks, Multiagent System

1. Introduction

Currently, one of the most dangerous and common threats to databases and Web

applications is the SQL injection attack. It typically involves malicious modifications of

the user SQL input either by adding additional clauses or by changing the structure of

an existing clause [46]. SQL injection enables attackers to access, modify, or delete

critical information in a database without proper authorization [45]. In spite of being a

well-known type of attack, the SQL injection remains at the top of the published list of

security threats [35]. The solutions proposed so far [6], [47], [48], [5], [60], [32], [64]

seem insufficient to prevent and block this type of attack because these solutions lack

the learning and adaptation capabilities for dealing with 0-day (previously unseen)

attacks as well as new or future variations of attacks. Furthermore, the vast majority of

these solutions are based on centralized mechanisms, with little capacity to work in

distributed and dynamic environments.

Taking previous research one step further, this study presents idMAS-SQL (Intrusion

Detection Based on MAS to Detect and Block SQL Injection), a hybrid solution based

on a distributed architecture (multiagent system - MAS) [65] capable of detecting and

blocking SQL Injection Attacks. The philosophy of multi-agent systems makes it

possible to deal with SQL injection attacks from the perspective of the elements of

communication, ubiquity and autonomous computation, and from the standpoint of a

global distributed system. Every component in idMAS-SQL interacts and cooperates to

achieve a global common goal: the detection and prevention of ongoing intrusions in a

3

database. idMAS-SQL presents a hierarchical organization structured by layers of

agents, which distributes roles and tasks for the detection and prevention of SQL

injection attacks. The agents at each level are assigned specific tasks which they can

execute regardless of their physical location, due to their own capabilities.

idMAS-SQL has evolved from the SC-MAS architecture [2] which follows the strategy

of an Intrusion Detection System (IDS) by means of a distributed approach based on the

idCBR agent capabilities. idCBR agents are a particular type of CBR-BDI agent [3],

[16] whose internal structure and capacities are based on mental aptitude [33]. These

agents are characterized by the integration of a CBR (Case-Based Reasoning)

mechanism [3] in a deliberative BDI Agent. This mechanism provides the agents with a

greater level of adaptation and learning capability given that CBR systems use past

experiences to solve new problems [16]. This is very effective for blocking SQL

injection attacks as the mechanism uses a strategy based on anomaly detection [55],

modelling the normal/legal SQL queries.

The main innovations of idMAS-SQL are the incorporation of a new classification

strategy which is based on Data Mining in idCBR agents, and of an agent with special

capabilities for the visualization and subsequent analysis of data. idCBR agents are

specially designed to incorporate a mixture of classification through an Artificial Neural

Network (ANN) and a Support Vector Machine (SVM). Through the use of this

mixture, it is possible to take advantage of both strategies in order to classify SQL

queries in a more reliable way. The use of idCBR agents with advanced capabilities for

analyzing and predicting SQL attacks is one of the main features of the architecture.

Furthermore, the incorporation of a visualizer agent provides human experts with a very

useful tool for analyzing those cases which are classified as suspicious by the idCBR

agent and which require validation by an expert. The Visualizer Agent is a type of agent

equipped with advanced capabilities for data visualization through unsupervised

4

projection models. Specifically, it combines a clustering technique for the selection of

similar requests with a neural model for the reduction of dimensionality, which permits

visualisation in 2D or 3D.

The remainder of the paper is structured as follows: Section 2 presents the problem

that has prompted most of this research work. Section 3 introduces the topic of

visualization techniques for information security and the projection models applied in

this study. Section 4 presents the proposed MAS architecture in detail. Section 5

explains the internal structure of the two most important agents in this architecture.

Finally, Sections 6 and 7 present the experimental results and conclusions after having

tested the proposed approach.

2. SQL Injection Attacks

An SQL injection attack takes place when a hacker changes the semantic or syntactic

logic of an SQL text string by inserting SQL keywords or special symbols within the

original SQL command, executed at the database layer of an application [35]. Different

attack techniques exist which include the use of SQL Tautologies, Logic errors/Illegal

Queries, Union Queries and Piggy-back Queries. Other more advanced techniques use

injections based on interference and alternative codification [35].

(1) SELECT * FROM tblUsers WHERE id = 1 or 1=1 AND user LIKE "%root%"

(2)

SELECT IF(user = 'root', BENCHMARK(1000000,MD5('x')),NULL)

FROM login declare @q varchar(8000); select @q =

0x73656c65637420404076657273696f6e; exec(@q). Generating results: ‘select

@@version'

The first query bases its strategy on adding an expression that is always true to the

where-clause of a select statement (tautologies). The second query masks the injection

by using a type of codification such as ASCII (American Standard Code for Information

Interchange) or a codification in Hexadecimal format.

5

The cause of SQL injection attacks is relatively simple: an inadequate input validation

on the user interface. As a result of this attack, a hacker can be responsible for

unauthorized data handling, retrieval of confidential information, and in the worst

possible case, taking over control of the application server [35].

Different strategies have been presented as a solution to the problem of SQL injection

attacks [35], with special attention given to strategies based on IDSs [6], [47], [48], [5],

[60], [32], [64]. One approach based on anomaly detection was proposed by [6],

applying a clustering strategy to group similar queries and isolate queries which are

considered malicious. The main disadvantage of this approach is its high computational

overhead which would affect a real-time detection. Kemalis and Tzouramanis propose

the SQL-IDS (SQL Injection Detection System) [47] which uses security specifications

to capture the syntactic structure of SQL queries generated by the applications. The

main limitation of this approach is the computational cost when comparing the new

query with the predefined structure at runtime.

In [48] two types of SQL injection attacks are raised: tautology attacks and those based

on the UNION operator. Through the syntactic analysis of SQL query strings, the data

of HTTP requests are extracted to be used later in the training phase and to determine

the threshold to be used in the evaluation phase. Bertino, Kamra and Early [48] propose

an anomaly detection mechanism applied using data mining techniques. The main

problem of this approach is finding an adequate threshold to maintain a low rate of both

false positives and false negatives. Another anomaly-based approach is proposed by

Robertson, Vigna, Kruegel and Kemmerer [60]. This approach uses generalisation

techniques to convert suspicious requests within abnormal signatures. These signatures

are later used to group malicious requests which present similar characteristics. Another

technique used is characterization, which involves deducing the type of attack

associated with a malicious request. A low computational overhead is generated;

6

however, it is susceptible to generating false positives. The ID3 algorithm, presented by

Garcia, Monroy and Quintana [32], proposes the detection of attacks targeted at web

applications. The ID3 algorithm is used to detect and filter malicious SQL strings. This

approach presents a significant percentage of incorrect classifications. Valeur, Mutz,

and Vigna [64] propose the use of anomaly detection through the generation of a series

of models beginning with a set of recovered queries. At execution time, they monitor

the applications in order to identify requests which are not associated with the

aforementioned models.

3. Visualization for Information Security

As they are considered a viable approach to information seeking, visualisation

techniques have been applied to massive datasets for many years [1]. Visual inspection

of network traffic patterns is presented as an alternative for managing a crucial aspect of

network monitoring [4] because its chief aim is to provide security personnel with a

synthetic representation of the network situation. In performing this task, visualisation

tools can:

• Assist security personnel in detecting anomalies and potential threats through an

intuitive display of the progression of network traffic.

• Deal easily with highly heterogeneous and noisy data such as the data required

for network monitoring and intrusion detection (ID) [18].

• Provide network managers with automated support and motivate their

effectiveness by taking advantage of the ability of the human eye to extrapolate

normal traffic patterns and detect anomalies. As stated in [8], "a picture is worth

a thousand packets" or "a picture is worth a thousand log entries" [54].

• Help network managers diagnose performance issues or understand

communication patterns between nodes.

• Serve as tools that are complementary to other security mechanisms.

The monitoring task that detects intrusive or anomalous events can be achieved by

visualising data at different levels of abstraction: network nodes, intrusion alerts,

packet-level data, communication content, log files, and so on. In other words, different

data from various security tools can be visualised.

7

Visualisation tools rely on the human ability to recognize different features and to detect

anomalies through graphical devices [1]. Human vision can rapidly locate, discover,

identify, and compare objects; all essential tasks in the network monitoring process,

considering the overwhelming amount of information and raw traffic data that must be

processed [8].

The underlying operational assumption of this approach is mainly grounded in the

ability to render high-dimensional traffic data in a consistent yet low-dimensional

representation. Therefore, security visualisation tools have to map high-dimensional

feature data into a low-dimensional space for presentation. One of the main assumptions

of the visualization task in the present study is that neural projection models will prove

themselves to be satisfactory for the purpose of SQL query visualisation through

dimensionality reduction, as they previously have been for some other attacks [12, 38].

To date, most researches on ID have approached it from a classification standpoint, such

as [26, 50, 59, 63]. They perform a 2-class classification of network traffic:

normal/anomalous in anomaly-based ID, and intrusive/non-intrusive in misuse-based

ID. From a different standpoint, this study proposes visualisation techniques for the

detection of attacks. It is worth emphasizing that this proposal entails the visualisation

of SQL queries for detecting attacks (that is, visualisation for ID) and not the

visualisation of IDS alerts or logs (that is, visualisation of ID) as others have done [44].

The visualisation-based approach to ID relies on the following ideas [9]:

• Anomalous situations can be identified by their "visual signature". Visual

fingerprints are frequently visible despite the visual noise of background traffic.

• Some stealthy attacks are resistant to detection by classification-based IDSs, but

are readily visible using appropriate visualisations.

• Visualisation techniques require little resources and are remarkably resistant to

overload caused by high volumes of network traffic.

• The completeness of visualisation-based IDSs is supposedly higher than that of

classification-based IDSs when facing 0-day attacks.

Unlike other security tools, IDSs need to be monitored to make the most of their

benefits [19]. The huge number of alerts that are usually generated by IDSs (including

many false positives and negatives) is a hindrance to permanent (24h.) monitoring,

mainly due to economical costs. Visualisation-based IDSs can ease this task by

providing an easily understandable snapshot of the network status, thus reducing the

time needed for ID.

8

Visualisation techniques take advantage of the outstanding capabilities of the human

visual system to detect patterns and anomalies in visual representations of abstract data

[52]. Another advantage of visualisation is that it transforms the task of analysing

network data from a perceptually serial process (by reading textual data) to a

perceptually parallel process (by presenting more concepts) [25]. Because of this, the

visualisation approach to ID implies several advantages:

• Attack visualisation can provide fresh insight into the analysed data, allowing

the deduction of new hypotheses usually lost in complex analysis [18].

Consequently, 0-day attacks can be easily detected.

• "Visualisation tools need to be designed so that anomalies can be easily flagged

for later analysis by more experienced analysts" [34]. Visualisation for ID can

help in training security personnel with no previous experience in security tasks,

as well as reducing the time spent by more experienced personnel.

• For effective analysis, network data must be correlated with several variables.

This requires dealing with highly heterogeneous, complex, and noisy data. The

visualisation approach simplifies this problem by presenting the traffic situation

in an intuitive way, as visual images can give perceptual clues to the

administrators [18].

• Attack visualisation can be much faster than other anomaly detection approaches

[18]. As it also reduces the time and effort of reviewing security logs, it implies

a great reduction of the time (and hence resources) required for ID.

Although many ID tools have begun to incorporate advanced graphical user interfaces,

most of them fail to provide an intuitive and comprehensive visualisation of network

traffic. To identify intrusions, one has to look for "interesting" structures and for

"abnormal" or unusual data. Although this process cannot be precisely detailed in a

general and objective way, "one usually can recognize unusual data when one sees

them" [53].

One of the main drawbacks of the visualisation approach to ID is that even if equipped

with the "perfect" visualisation technique, security personnel will make mistakes in

detecting intrusions. This is a consequence of relying on human abilities, which are

affected by a range of factors such as time pressure, fatigue, boredom, and so on.

In this study, some statistical and unsupervised neural projection models were applied

for visualization-based ID of SQL injection attacks. These models are described in the

following subsections.

9

3.1 Principal Component Analysis

Principal Component Analysis (PCA) [41], [58] describes the variation in multivariate

data in terms of a set of uncorrelated variables, in decreasing order of importance, each

of which is a linear combination of the original variables. Using PCA it is possible to

find a smaller group of underlying variables that describe the data, with the result that

the first few components of such a group might explain most of the variation in the

original data. It should be noted that even if we are able to characterize the data with a

few variables, it does not mean that an interpretation will ensue. This statistical

technique may be performed by using connectionist models [56], [61], [29].

3.2 Exploratory Projection Pursuit

Exploratory Projection Pursuit (EPP) [27] is a statistical technique for solving the

complex problem of identifying structure in high-dimensional data. It involves low-

dimensional data projections in which structure is identified by eye and requires an

index of “interestingness” by which each projection is measured. Subsequently, the data

is transformed by optimizing this index in order to examine the projections of greatest

interest in greater detail. From a statistical point of view, the most interesting directions

are those which are as non-Gaussian as possible. Typical random data set projections

are usually Gaussian [23], so identification of the most interesting features in the data

calls for further investigation of these “interesting” directions. As in the case of PCA,

this statistical technique may be implemented by using connectionist models [43], [42],

[13], [30].

While PCA is focused on the identification of the largest variance directions, EPP looks

for higher order statistics, such as skewness or kurtosis.

3.3 Curvilinear Component Analysis

Curvilinear Component Analysis (CCA) [22] is a nonlinear dimensionality reduction

method. It was developed as an improvement on the Self-Organizing Map (SOM) [49].

It tries to circumvent the limitations inherent in some previous linear models such as

PCA. Its output is not a fixed lattice but a continuous space able to take the shape of the

submanifold in the dataset (input space).

The CCA is based on a self-organised neural network performing two tasks: a vector

quantization of the submanifold, and a nonlinear projection of these quantising vectors

10

toward an output space, providing a revealing view of the way in which the submanifold

unfolds. Quantization and nonlinear mapping are separately performed by two layers of

connections.

In the vector quantization step, the input vectors are forced to become prototypes of the

distribution by using competitive learning and the regularization method proposed in

[21]. Thus, this step, which is intended to reveal the submanifold of the input data,

regularly quantizes the space covered by the data, regardless of the density. Euclidean

distances between these input vectors are considered, as the output layer has to build a

nonlinear mapping of the input vectors.

Since a perfect matching is not possible at all scales when the manifold is "unfolding", a

weighting function is introduced, yielding the quadratic cost function:

() ()∑∑
≠

−=
i ij

yijijij YFYXE λ,
2
1 2 (1)

As regards its goal, the projection part of CCA is similar to other nonlinear mapping

methods in that it minimizes a cost function based on interpoint distances in both input

and output spaces. Instead of moving one of the output vectors (iy) according to the

sum of the influences of every other jy , CCA proposes pinning down one of the output

vectors (iy) "temporarily", and moving all other jy around, disregarding any

interaction between them. Accordingly, the proposed "learning" rule can be expressed

as:

() ()()
ij

ij
ijijyijj Y

yy
YXYFty

−
−=∆ λα , ij ≠∀ (2)

The main advantages of CCA, in comparison to other methods such as stochastic

gradient descent or steepest gradient descent, are:

• The proposed rule (y∆) is much lighter than a stochastic gradient from a

computational standpoint.

• The average of the output vector updates is proportional to the opposite of the

gradient of the cost function (E). On the other hand, it can temporarily produce

increases in E , which eventually allows the algorithm to escape from local

minima of E . The research in [22] showed that the CCA method implies a

lower final cost in comparison with gradient methods.

CCA is able to perform dimensionality reduction and represent the intrinsic structure of

given input data without any previous knowledge of distribution of the analysed dataset.

11

Compared with other previous projection algorithms, the CCA method is more general,

reliable, and faster at capturing input data structure.

3.4 Cooperative Maximum Likelihood Hebbian Learning

Cooperative Maximum Likelihood Hebbian Learning (CMLHL) is based on the EPP

neural model called Maximum Likelihood Hebbian Learning (MLHL) [13, 31]. The

main difference between these two models is that CMLHL includes lateral connections

[10, 11] derived from the Rectified Gaussian Distribution (RGD) [62]. The RGD is a

modification of the standard Gaussian distribution in which the variables are

constrained to be non-negative. More precisely, CMLHL includes lateral connections

based on the mode of the cooperative distribution that is closely spaced along a

nonlinear continuous manifold. By including these lateral connections, the resulting

network can find the independent factors of a dataset in a way that captures some type

of global ordering in the dataset.

Considering an N -dimensional input vector x , an N -dimensional output vector y and

with ijW being the weight (linking input thj to output thi), CMLHL can be expressed

as:

Feed-forward step:

ixWy
1j

jiji ∀=∑
=

N

, (3)

Lateral activation passing:

() ()[]+−+=+ Aybτ(t)yty ii 1 (4)

where A (described below) is a matrix used to modify the response to the data, and b is

the bias parameter

Feedback step:

∑
=

∀−=
M

i
iijjj jyWxe

1
, (5)

Weight change:

() p
jjiij eesignyW ||..η=∆ (6)

where η is the learning rate, τ is the "strength" of the lateral connections, and p a

parameter related to the energy function [10, 13, 31].

12

A is a symmetric matrix used to modify the response to the data whose effect is based

on the relation between the distances among the output neurons. It is based on the

cooperative distribution, but to speed learning up, it can be simplified to:

()()MjijiA ij /2cos),(−−= πδ (7)

where ijδ is the Kronecker delta.

The application of CMLHL, initially in the field of artificial vision [10, 11], and

subsequently to other interesting topics [14, 37, 39, 40], has proven that this model can

successfully perform data visualisation.

3.5 Multidimensional Scaling

Multidimensional Scaling (MDS) [17] is a dimensionality reduction technique used for

representing data. It involves finding a graphic representation in low dimensionality

which is as close as possible to the original data. Two types of MDS exist: working with

original values, or using ranges to represent the order of values in place of distances. If

original magnitudes are used, it is called metric MDS, otherwise, it is denominated non-

metric MDS. Starting with a matrix of distances, the values are sorted, representing a

connection that indicates which elements are closest. What MDS tries to create is a new

set of variables which maintain the same order of the initial variables based on a new

matrix of distances.

4. idMAS-SQL: A Multi-Agent Architecture to Detect and Block SQL Injection

Given some of the above mentioned capabilities, a multi-agent solution fits the

challenge of detecting and blocking SQL-injection attacks. In keeping with this idea, the

present study proposes the use of a multi-agent architecture, (see Fig. 1) to focus on

SQL injection attacks. It is based on an innovative approach since there is no known

architecture with these characteristics for detecting SQL injection attacks.

The distributed resolution of problems balances the workload, facilitates recovery

from error conditions, and also avoids centralized traffic. The analysis, classification

13

and decision making capabilities, among others, are distributed throughout several

layers in the proposed idMAS-SQL architecture, as depicted in Fig. 1. The agents that

make up the architecture are assigned specific roles to perform their tasks. Moreover,

the distribution greatly simplifies the capacity to recover from errors or failures because

if an agent fails, it is immediately replaced without affecting the other agents at the

same level or in other levels. Additionally, the proposed architecture is based on a

hierarchical model that reduces the complexity of tasks such as monitoring and

capturing user requests, classifying user requests, evaluating the final solution, etc.

Distributing the functionality at each level, while maintaining each level independently,

allows new changes to be easily adapted. Each level of the architecture houses a

collection of agents with well-defined roles that allow their tasks and responsibilities to

be clearly specified. The architecture has been divided into three levels so that the

specific tasks are assigned according to the degree of complexity. Fig 1 depicts the

idMAS-SQL architecture with each level and the respective agents.

Fig. 1. idMAS-SQL architecture showing the different layers and their respective agents.

14

idMAS-SQL is presented as an evolution of the SC-MAS architecture [2] that proposed

a novel strategy to identify and block SQL injection attacks through a distributed

approach based on the capacities of idCBR agents, which are a particular type of CBR-

BDI agents [15]. As well as the CBR-BDI agents, an agent with visualisation

capabilities is incorporated to assist the expert in decision making regarding queries that

are classified as suspicious. To do so, a visualization mechanism is proposed which

combines clustering techniques and neural models, based on unsupervised learning, to

reduce dimensionality.

The different types of agents located at the different levels of the idMAS-SQL

architecture can be described as:

• Sniffer. This type of agent is located in the monitoring layer and is responsible for

capturing datagrams, ordering TCP fragments to extract the request’s SQL string

and executing a syntactic analysis of the request’s SQL string. There can be more

than one Sniffer agent depending on the amount of workload.

• Control-L1. This is one of the agents that execute control and communication

functions in the lower layers of the architecture. It is located in the monitoring layer,

and all communication from this layer is administered by the agent. Its functions

include: receiving data from the Sniffer agent and assigning the Analyzer agent to

the task of searching for patterns of attacks; reporting to the administration layer the

detection of any intrusion during the process of comparing attack signatures; and

supervising the workload of the layer in order to request, from the administration

layer, the creation or elimination of Sniffer or Analyzer agent requests.

• Analyzer. This type of agent is located in the classification layer. Its function

includes matching patterns of known attacks; a database with previously built

patterns allows this task. There can be more than one Analyzer agent depending on

the amount of workload.

15

• idCBR. This type of agent is also located in the classification layer and is a core

component of the architecture as it carries out a classification of SQL strings

through detection anomalies. It integrates a case based reasoning (CBR) mechanism.

In the reuse phase of the CBR cycle it applies a mixture of neural networks to

generate a classification (legal, illegal or suspicious). There can be more than one

idCBR agent depending on the amount of workload.

• Control-L2. This is the second type of agent for carrying out control and

communication functions. All of the incoming and outgoing communication of the

classification layer is administered by the Control-L2 agent. Its functions include:

receiving processed data from the Monitoring layer and assigning a specific

classifier agent to execute the task of classification; reporting the detection of

intrusions to the administration layer once the classification process is completed;

and supervising the workload of the layer to request, from the administration layer,

the creation or elimination of requests from the idCBR agents.

• Visualizer. This agent is the main novelty of the architecture proposed in this

research. Also located in the Administration layer, this agent facilitates the

interaction between security personnel and the architecture. It applies different

projection models for visualizing SQL-related data. Consequently, SQL injection

attacks can be visually identified. In addition to this function, the Visualizer agent

dictates the rules and actions for when an intrusion is detected, given that its

principal task is to block (not execute) queries identified as anomalous. It also

facilitates the implementation of adjustments in the architectural setup. Finally, it is

equipped with the ability to run on mobile devices to facilitate the task of

monitoring.

16

• Manager. This agent is responsible for the evaluation and coordination of the

overall architectural operation. It administers the directory of the architecture’s

operative agents through communication with the idCBR agents at each layer.

The following section provides a detailed description of the two types of key agents in

intrusion detection.

5. Agents for Detecting SQL Injection Attacks

The idCBR and Visualizer agents, presented in this study, interact with other agents

within the idMAS-SQL architecture. These other agents carry out tasks related to

message capturing, syntactic analysis, and administration. The idCBR and Visualyzer

agents execute complementary tasks to determine the reliability of SQL queries.

The idCBR agent is a type of BDI agent that incorporates a CBR engine. This paradigm

is based on the idea that similar problems have similar solutions. Thus, a new problem

is resolved by consulting the case memory to find a similar case which has been

resolved in the past.

The Visualizer agent is an agent that is equipped with the capability of visualization,

which helps the security expert to resolve any user requests that are classified as

suspicious by the idCBR agent. This agent incorporates projection models used as tools

to identify and remove correlations between problem variables, which enable us to carry

out dimensionality reduction, and visualization or exploratory data analysis. In this

study, some statistical and unsupervised neural projection models, specifically PCA

[58], CCA [22], CMLHL [10], and MDS [17] were applied.

Below, the mechanisms incorporated in the internal structures of the idCBR and

Visualizer agents are presented in detail.

17

5.1 idCBR Agent

This subsection presents the idCBR agent, with special emphasis on its internal

structure and the classification mechanism of SQL attacks. This mechanism combines

the advantages of CBR-BDI systems, such as learning and adaptation, with the

predictive capabilities of a combination integrated by ANNs and SVMs. The use of this

combination of techniques is based on the possibility of using two classifiers together to

detect suspicious queries in the most reliable way possible.

When working with CBR systems, the key concept is that of “case”. A case is defined

as a previous experience and is composed of three elements: a description that depicts

the initial problem; a solution that describes the sequence of actions performed in order

to solve the problem; and the final state, which describes the state that has been

achieved once the solution is applied.

In terms of CBR, the case is composed of elements of the SQL query described as

follows: (a) Problem Description, which describes the initial information available for

generating a plan. The problem description consists of: case identification, user session

and SQL query elements. (b) Solution, which describes the action carried out in order to

solve the problem description, in this case, prediction models. (c) Final State, which

describes the state achieved after the solution has been applied. The fields defining a

case are listed in Table 1. Additionally, the information related to the prediction models

used is also stored in the Models Memory.

18

Table 1. Structure of the problem definition and solution for SQL query classification.

Problem description fields Solution fields

IdCase
Session
User
IP_Address
Query_SQL
Affected_table
Affected_field
Command_type
Word_GroupBy
Word_Having
Word_OrderBy
Number_And
Number_Or
Number_literals
Number_LOL
Length_SQL_String
Start_Time_Execution
End_Time_Execution
Query_Category

Integer
Session
String
String
Query_SQL
Integer
Integer
Integer
Boolean
Boolean
Boolean
Integer
Integer
Integer
Integer
Integer
Time
Time
Integer

Idcase
Classification_Query

Integer
Integer

Fig. 2. CBR cycle and classification mechanism of the idCBR agent.

19

Fig. 2 depicts the different stages applied in the reasoning cycle. To summarize, the

retrieval stage involves a selection of queries sorted by type and by the memory’s

classification models. In the reuse phase, an MLP and an SVM [57] are applied

simultaneously to carry out the prediction of the new query. During learning, the

memory information regarding the cases and models is updated.

The different stages of the CBR reasoning cycle associated with the system are

described as follows.

• Retrieve: it is divided into two phases, case retrieval and model retrieval. Case

retrieval is performed by using the Query_Category attribute which retrieves queries

from the case memory (Cr) which were used for a similar query in accordance with

attributes of the new case cn. Subsequently, the models for the MLP mlpr and svmr

associated with the recovered cases are retrieved. The recovery of these memory

models improves the system’s performance so that the time necessary for the

creation of models will be considerably reduced, mainly in the case of the ANN

training.

• Reuse: it begins with the information of the retrieved cases Cr and the recovered

models mlpr and svmr. The combination of both techniques is fundamental in

reducing the rate of false negatives. The inputs of the MLP are: Query_SQL,

Affected_table, Affected_field, Command_type, Word_GroupBy, Word_Having,

Word_OrderBy, Numer_And, Numer_Or, Number_literals, Number_LOL, and

Length_SQL_String. The number of neurons in the hidden layer is 2n+1, where n is

the number of neurons in the input layer. Finally, there is one neuron in the output

layer. The sigmoid activation function has been selected for the different layers.

Taking into account the activation function fj, the calculation of output values is

given by the following expression:

20

p
jy = fj))(

1
j

N

i

p
iji (t) x(tw θ+∑

=

 (8)

The outputs correspond to rx . As the neurons exiting from the hidden layer of the

neural network contain sigmoid neurons with values between [0, 1], the incoming

variables are redefined so that their range falls between [0.2, 0.8]. This

transformation is necessary because the network does not deal with values that fall

outside of this range. The outgoing values are similarly limited to the range of [0.2,

0.8] with the value 0.2 corresponding to a non-attack and the value 0.8

corresponding to an attack. The network training is carried out through the error

Backpropagation Algorithm [51].

At the same time that the estimation through the use of neuronal networks is

performed, an estimation is also carried out by the SVM application: a supervised

learning technique applied to the classification and regression of elements. The

algorithm represents an extension of nonlinear models [10]. SVM also separates the

element classes which are not linearly separable. In order to do so, the space of

initial coordinates is mapped in a high dimensionality space through the use of

functions. Given that the dimensionality of the new space can be very high, it is not

feasible to calculate hyperplanes that allow the production of linear separability. To

do so, a series of non-linear functions called kernels is used.

Let us consider a set of patterns)},(),...,,(),,{(2211 mm yxyxyxT = where ix is a

vector of the dimension n. The aim is to convert the elements ix in a space of high

dimensionality through the application of a function, in such a way that the set of

original patterns is converted into the following set

)}),((),...,),((),),({()(2211 mm yxyxyxT ΦΦΦ=Φ that, depending on the selected

21

function)(xΦ , could be linearly separable. To carry out the classification, this

equation sign is studied [13]:









+ΦΦ= ∑

=

bxxysignxclass
m

i
kiiik

1
)()()(λ (9)

where iλ is a Lagrange multiplier, iy output value for the ix , b constant.

The selected kernel function in this problem was polynomial. The values used for

the estimation are dominated by decision values and are related to the distance from

the points to the hyperplane.

Once the output values for the ANN and the SVM are obtained, the mixture is

performed by a weighted average in function of the error rate of each one of the

techniques. Before calculating the average, the values are normalized to the interval

[0, 1]. As SVM provides positive and negative values and those of greater

magnitude, the calculation could affect the final value in greater measure if it is not

redimensioned.

• Revise: for those cases detected as suspicious, with output values determined

experimentally in the interval [0.35, 0.6], a review by a human expert is performed.

To facilitate the interaction of the human expert, a sophisticated mechanism based

on visualization techniques was incorporated in the Administration layer. This

mechanism allows the security expert to manage suspicious cases with greater

precision. In cases with queries clearly classified as attacks, these are rejected, and

the queries clearly classified as legitimate are allowed to run on the database. The

suspicious queries are rejected and subsequently validated in the revise phase for a

subsequent execution.

• Retain: the learning phase updates the information of the new classified case and

reconstructs the classifiers offline to leave the system available for new

22

classifications. The ANN classifier is reconstructed only when an erroneous

classification is produced. In the case of a reference to inspection of suspicious

queries, information and classifiers are updated when the expert updates the

information.

5.2 Visualizer Agent

This section presents an agent especially designed to resolve user requests that have

been classified as suspicious. Its main function is to complement the classification of

SQL attacks through visualization facilities. As a result, this agent improves the

classification performance of the idMAS-SQL agent.

This agent visualizes all the previously classified queries, highlighting those most

similar to the new suspicious query. The selection of similar cases is carried out through

the use of a neuronal Growing Cell Structures (GCS) [28] network, that distributes the

previously stored cases in meshes and selects the mesh in which the new case is found.

To visualize the cases (those in the selected mesh), the dimensionality of data is reduced

by means of a projection model. The information is represented and the associated

queries are recovered with the retrieved mesh, as shown in Fig. 5. For the purpose of

facilitating the revise phase, CART [7] is applied to extract the relevant field in the

probes that have been removed. The information about the fields can help us to

understand the reasons that queries are classified as legal or illegal.

6. Experimental Results

A comprehensive set of experiments was designed and carried out to check the

proposed approach. As a result, a sample web application with access to a MySQL 5.0

database was developed. After creating the database, legal queries were sent from the

designed user interfaces. These requests were filtered to avoid redundancy and only

legal SQL queries were gathered to generate the dataset. In the case of malicious

queries, the dispatch of the queries was automated using the agent SQLMAP0.5 [20].

23

This tool is able to fingerprint an extensive DBMS back-end, retrieve remote DBMS

databases, usernames, tables, and columns, enumerate entire DBMS, read system files,

and much more, taking advantage of web application programming security flaws that

lead to SQL injection vulnerabilities. Although the SQLMap 0.5 tool generates a wide

variety of malicious queries by using different strategies of attack, these queries were

also filtered to remove any similar SQL string previously stored.

For the classification process and application of the projection models, the SQL strings

were syntactically analyzed, storing the fields in the dataset as listed in Table 2.

Table 2. Dataset fields obtained from the syntactic analysis of SQL queries.

Field Description Type (Values)

Affected_table Number of tables affected by the query Int (n tables)

Affected_field Number of fields affected by the query Int (n fields)

Command_type Type of declared command in the query Int (0-3)

Word_GroupBy Number of repetitions of Group By clause Int (n clause)

Word_Having Number of repetitions of Having clause Int (n clause)

Word_OrderBy Number of repetitions of Order By clause Int (n clause)

Number_And Number of repetitions of the And Operator Int (n ops)

Number_Or Number of repetitions of the Or Operator Int (n ops)

Number_literals Number of Literal in the SQL string Int (n literals)

Number_LOL Number of declared Expressions Literal-Operator-

Literal in the SQL String

Int (n exprs)

Length_SQL_String Length of the SQL String Int (n chars)

To analyze the successful rates, different classifiers were applied: Bayesian Network,

Naive Bayes, AdaBoost M1, Bagging, DecisionStump, J48, JRIP, LMT, Logistic,

LogitBoost, MultiBoosting AdaBoost, OneR, SMO, and Stacking. The software used

for the experiments includes the libraries provided by WEKA [36] and the R script

language. This software was used to compare the different classifiers, whose names

come from those listed in the libraries. These different classifiers were applied to 705

previously classified queries (437 legal, 268 attacks). The consecutive process for

carrying out the output test was the following: select one of the cases, extract it from the

set, construct the model starting from the remaining cases and classify the extracted

24

case. This process is repeated for each one of the cases and techniques in order to

analyze each query without it being used to build the model. The final result of the

classification can be seen in Table 3.

Table 3. Percentage of hits for the different classifiers.

Method Success rate Method Success rate Method Success rate

BayesNet 90.50 Naive Bayes 94.47 AdaBoostM1 94.33

Bagging 97.02 DecisionStump 84.82 J48 97.73

JRIP 98.16 LMT 98.30 Logistic 97.59

LogitBoost 96.45 MultiBoostAB 94.47 OneR 88.23

SMO 97.16 Stacking 61.99 idCBR 99.01

As shown in Table 3, the highest-performance is obtained by the idCBR, which has a

success rate of 99.01. Figure 3 shows the ROC curves for the methods presented in table

3. As shown in Figure 3, the idCBR method presents the highest area under the curve

(AUC), and can be consequently considered to be the method that provides the best

results.

Fig. 3. ROC curves for the different classifiers shown in Table 3.

25

To analyze the reuse phase in depth, a mixture was carried out between all of the pairs

of methods displayed in Table 3. The results are shown in Table 4, which is divided into

two halves by the principal diagonal. The upper part of the principal diagonal contains

the percentage of decisions for the combination of methods of the column file. In these

values, estimations of the dubious cases are included. The part corresponding to the

lower diagonal contains the percentage of cases that can be considered as suspicious

among those classified. In the combination, it is clear that there is no method that

exceeds the number of decisions of the proposed procedure: 99.01. The number of cases

detected as suspicious, with an output between the values of 0.35 and 0.6, was limited to

6.

Table 4. Mixture of experts with combinations of the different classifiers. The upper values of the principal diagonal
correspond to the percentage of elements successfully classified taking suspicious cases into account; the lower

values to the percentage of cases detected as suspicious.

B
ay

es
N

et

N
ai

ve
B

ay
es

A
da

B
oo

st
M

1

A
da

B
oo

st
M

1

D
ec

is
io

nS
tu

m
p

J4
8

JR
ip

L
M

T

L
og

is
tic

L
og

itB
oo

st

M
ul

tiB
oo

st
A

B

O
ne

R

SM
O

St
ac

ki
ng

BayesNet 93.48 94.47 95.89 87.66 98.01 98.16 97.16 96.60 96.03 93.90 88.23 97.16 89.79

NaiveBayes 3.40 95.18 96.03 93.62 98.01 98.30 97.30 96.74 96.03 95.46 88.23 97.16 94.04

AdaBoostM1 5.82 3.97 96.17 94.04 98.01 98.16 97.59 96.45 96.03 94.04 88.23 97.16 95.18

Bagging 2.55 2.13 0.85 96.45 98.01 98.16 97.59 97.87 97.02 96.45 88.23 97.16 97.30

DecisionStump 9.36 10.50 11.49 12.91 98.01 98.16 97.45 97.59 94.89 93.33 88.23 97.16 84.82

J48 2.84 2.55 2.41 0.71 13.76 98.16 97.87 98.30 98.01 98.01 98.01 98.30 97.73

JRip 3.55 3.26 2.55 1.13 14.18 1.13 97.87 98.30 98.16 97.87 90.92 98.16 98.16

LMT 4.68 4.40 3.12 2.55 15.46 1.56 1.42 97.45 97.87 97.02 95.32 97.16 98.30

Logistic 5.53 3.12 2.41 1.70 14.04 0.71 1.56 1.70 97.73 96.17 88.23 97.16 96.74

LogitBoost 6.24 2.41 2.41 1.56 12.48 0.71 0.99 2.13 2.55 96.17 88.23 97.16 96.74

MultiBoostAB 5.11 4.96 0.57 2.41 11.06 3.40 3.97 4.96 3.55 2.98 88.23 97.16 94.04

OneR 8.51 8.23 6.10 8.23 18.44 10.35 11.06 11.63 9.50 4.40 10.07 96.74 88.23

SMO 2.13 1.99 0.85 0.43 13.48 1.70 2.41 2.41 0.14 0.28 2.70 10.64 97.16

Stacking 9.22 3.40 9.22 3.40 52.06 0.43 0.00 0.85 3.40 10.92 5.11 0.00 0.00

To evaluate the significance of the different techniques presented in Table 4, a cross

validation was established following the Dietterich's 5x2- Cross-Validation Paired t-

Test algorithm [24]. The value 5 in the algorithm name represents the number of

replications of the training process, and value 2 is the number of sets into which the

global set is divided. Thus, for each technique, the global dataset S was divided into two

groups S1 and S2 as follows: 21 SSS ∪= and φ=∩ 21 SS . The learning and estimation

26

stages were then carried out. This process was repeated 5 times for each technique, and

included the following steps: the classifier was trained using S2 and was then used to

classify S2 and S1. In a second step, the classifier was trained using S1 and was then

used to classify S2 and S1. The results obtained are shown in Table 5, where the columns

represent the success rate obtained for S1, S2 (Ri-A trained with S1) and S1, S2 (Ri-B

trained with S2) for each i repetition. The rows of Table 5 show the different classifiers

previously listed in Table 3.

Table 5. Number of errors obtained using the training and cross validation 5x2.

 R1-A R1-B R2-A R2-B R3-A R3-B R4-A R4-B R5-A R5-B

 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 Average

BayesNet 319 317 313 316 322 303 317 325 317 312 317 321 318 316 318 318 314 315 312 303 316.25

NaiveBayes 333 333 334 332 336 328 329 334 333 333 334 332 333 334 334 331 330 333 334 332 332.62

AdaBoostM1 331 331 335 325 342 332 329 321 331 328 339 339 330 335 341 331 333 331 341 342 332.80

Bagging 345 345 346 344 349 341 340 342 344 345 346 342 340 339 348 344 345 343 347 345 343.93

DecisionStump 294 304 304 294 309 289 310 304 304 294 294 304 297 301 301 297 296 302 302 296 299.90

J48 345 342 351 341 349 343 340 339 347 340 345 342 348 342 349 339 347 340 348 344 344.01

JRip 348 344 338 335 349 336 336 341 346 344 346 344 342 340 346 340 343 342 344 344 342.27

LMT 352 347 353 336 352 341 345 344 345 343 353 343 349 341 353 343 351 341 350 345 346.35

Logistic 343 343 347 338 347 336 339 347 342 343 344 340 342 344 346 340 345 344 344 345 342.82

LogitBoost 344 343 338 331 343 340 338 340 336 336 342 338 340 336 343 342 342 339 342 343 339.60

MultiBoostAB 335 335 338 335 309 289 325 312 312 310 335 335 310 304 334 336 337 336 323 324 323.03

OneR 301 321 321 301 315 291 312 310 312 302 310 312 312 310 310 312 311 311 311 311 309.58

SMO 342 344 339 340 341 342 339 342 339 342 343 340 340 341 344 341 342 339 342 341 341.15

Stacking 208 229 229 208 217 220 220 217 219 218 218 219 226 211 211 226 218 219 219 218 218.36

idCBR 348 348 342 352 352 343 350 347 347 346 346 350 347 350 339 351 349 346 346 349 347.28

Once the results presented in Table 5 were obtained, a study on the significance of the

different classification techniques was performed by applying the Mann-Whitney U-

test. It was a non-parametric test in which it is not necessary to make assumptions on

the data distribution, as in the t-test. The test determines two values: H0 and H1. H0

shows whether the data in both groups presents the same distribution, whereas H1

determines if there is difference in the distribution of the error distance data. The upper

diagonal of table 6 shows the level of significance for the statistical test, so that if the

value obtained is lower than the level of significance (commonly 0.05), we can

27

conclude that the methods are different. In the upper diagonal of Table 6 it is possible to

observe those methods in which differences were detected (in bold), and those in which

no differences were detected (in red). Clearly, the error distribution for the idCBR

approach differs from the error distribution for the rest of the methods, from which we

can conclude that there does exist a difference with all but one (LMT) of the methods

considered.

The analysis of the cross validation is completed using the Dietterich's 5x2- Cross-

Validation Paired t-Test [24]. The results obtained are shown in the lower diagonal of

Table 6. It is possible to observe that the results are very similar to those previously

shown in the upper diagonal (Mann-Whitney U-test). In this case, the only technique

that provides results similar to idCBR (i.e., the difference is not significant) is LMT (the

value obtained is higher than the level of significance: α).

Table 6. Mann-Whitney and Paired t-Test test for the significance of the differences. The upper diagonal contains the
Mann-Whitney U-Test and the lower diagonal contains the t-Test.

 Ba
ye

sN
et

N
ai

ve
Ba

ye
s

Ad
aB

oo
st

M
1

Ba
gg

in
g

De
ci

sio
nS

tu
m

p

J4
8

JR
ip

LM
T

Lo
gi

st
ic

Lo
gi

tB
oo

st

M
ul

tiB
oo

st
AB

O
ne

R

SM
O

St
ac

ki
ng

id
CB

R
BayesNet 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.054 0.001 0.000 0.000 0.000

NaiveBayes 0.000 0.913 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.796 0.000 0.000 0.000 0.000

AdaBoostM1 0.000 0.555 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.087 0.000 0.000 0.000 0.000

Bagging 0.000 0.000 0.000 0.000 0.935 0.200 0.153 0.300 0.000 0.000 0.000 0.001 0.000 0.001

DecisionStump 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

J48 0.000 0.000 0.000 0.946 0.000 0.315 0.095 0.463 0.003 0.000 0.000 0.017 0.000 0.009

JRip 0.000 0.000 0.000 0.038 0.000 0.098 0.022 0.703 0.026 0.000 0.000 0.101 0.000 0.000

LMT 0.000 0.000 0.000 0.017 0.000 0.005 0.000 0.039 0.000 0.000 0.000 0.000 0.000 0.506

Logistic 0.000 0.000 0.000 0.114 0.000 0.191 0.480 0.001 0.003 0.000 0.000 0.015 0.000 0.000

LogitBoost 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001 0.000 0.000 0.324 0.000 0.000

MultiBoostAB 0.019 0.012 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

OneR 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SMO 0.000 0.000 0.000 0.000 0.000 0.004 0.141 0.000 0.018 0.041 0.000 0.000 0.000 0.000

Stacking 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

idCBR 0.000 0.000 0.000 0.004 0.000 0.021 0.000 0.509 0.001 0.000 0.000 0.000 0.000 0.000

28

The information presented in Table 5 is graphically represented with a boxplot in Figure

4. It is possible to observe that the variability of the data is low for the idCBR

technique, while the other techniques (e.g., LMT) present a high variability.

Additionally, idCBR presents a higher success rate (although this fact cannot be

determined statistically) due to the variability of the LMT algorithm. The best success

rate is that of the idCBR method, as seen in Figure 4. The global average, without

distinguishing between the test and the validation, is 692.5 (98.23%) for the LMT

method and 694.6 (98.54%) for the proposed idCBR method. The number of successful

classifications of the idCBR method increases as the memory of cases grows, while the

success rate for the LMT remains constant, as shown in Table 3.

Fig. 4. Boxplots containing the information about the success rate for each technique considering the information
shown in Table 5.

The same analysis was repeated using only the data in Table 5 representing

classification errors in the test sets. In this case H0, although close, was not rejected

when comparing LMT to idCBR because the value obtained was 0.08. This fact

indicates that the idCBR has a better generalization capacity than the LMT technique.

Similarly, if the only errors selected were those related to the test, then the result

29

obtained from applying the paired t-test was 0.13, which will not allow us to determine

the difference between both methods, although it is the closest to being rejected.

To compare the execution times, we proceeded to perform a classification for 70,500

requests for each technique shown in Table 3. The results obtained are shown in Table

7. This table shows the total execution time (in seconds) for the 70,500 requests and the

average execution time in milliseconds.

Table 7. Comparison of the execution time for the different techniques.

 Total Execution Time (s) Average Execution Time (ms)
BayesNet 3.24 0.04595745
NaiveBayes 3.48 0.0493617
AdaBoostM1 2.78 0.03943262
Bagging 2.69 0.03815603
DecisionStump 2.64 0.03744681
J48 2.63 0.03730496
JRip 2.63 0.03730496
LMT 3.68 0.05219858
Logistic 3.1 0.04397163
LogitBoost 3.15 0.04468085
MultiBoostAB 3.2 0.04539007
OneR 3.13 0.04439716
SMO 3.58 0.05078014
Stacking 2.9 0.04113475
idCBR 5.35 0.07588652

In order to validate the revise phase, we proceeded to recover one of the suspicious

queries and to carry out a visualization of the results. The query recovered is shown

below:

select id_cliente, count(*) from client_order, client where id_client = id and id = 'test' AND '1' = '2' and date

between '2008-05-05 00:00:00' and '2008-05-05 23:23:23' group by id having city = 'Madrid' order by id

This query presents suspicious information because it contains a literal '1'='2' that could

be considered an attack. As this content does not make sense in a legal query, it could

be interpreted as an attack. The output value obtained by the idCBR agent was 0.541,

therefore it will be classified as an attack, as originally proposed.

30

To carry out the revision, the two previously mentioned different techniques of

dimensionality reduction were compared. Fig. 5 shows the visualizations provided by

the different techniques, which represent the selected query together with the most

similar queries. The stored queries are depicted in different colours: the sample query

(detailed above) is shown in blue, legal queries in green, attacks in red, and non-

recovered queries in grey.

a) PCA projection b) MDS projection

c) MLHL projection d) CCA projection

31

e) CMLHL projection

Fig. 5. Representation of queries during the revise phase, provided by different dimensionality techniques.

As can be seen, the dimensionality reduction that provides the best results is that of

CMLHL, since the retrieved similar cases are closer. Furthermore, it is easier for the

naked eye to detect clusters with this procedure than with the others applied. Based on

the results in Fig. 5.e, as provided by CMLHL, the query highlighted in blue can be seen

closest to the queries in red, from which it is possible to conclude that the query is

probably an attack.

Once it is confirmed that the recovered queries results are significant with regards to

their proximity in the projection to the suspicious query, the queries are displayed so

that the revision can be carried out. In this case, 39 similar queries were recovered. Two

examples of the recovered queries are:

select id_cliente, count(*) from client_order, client where id_client = id and id = 'test' and date
between '2008-05-05 00:00:00' and '2008-05-05 23:23:23' group by id having city = 'Madrid'
order by id

select id_cliente, count(*) from client_order, client where id_client = id and id = 'test' AND
ORD(MID((SELECT 4 FROM information_schema.TABLES LIMIT 0, 1), 2, 1)) > 1 AND '1'='1' and
date between '2008-05-05 00:00:00' and '2008-05-05 23:23:23' group by id having city =
'Madrid' order by id

The first corresponds to a legal query while the second corresponds to an attack. In

order to facilitate the revise phase, knowledge extraction is carried out to identify the

variables that determine the relevant attributes that establish their classification. To this

end, CART was applied, as it allows the selection of important attributes according to

the rules shown in Fig. 6. Each one of the rows corresponds to a tree branch that

contains the number of assigned nodes, the condition, the number of nodes correctly

classified, the misclassified nodes, and the class they belong to. The probability of each

32

one of the classes being assigned to the nodes (legal C0, illegal C1) is indicated within

parentheses (Fig. 6).

n= 39

node), split, n, loss, yval, (yprob)

 * denotes terminal node

1) root 39 11 C0 (0.71794872 0.28205128)

 2) Number_literals< 4.5 30 2 C0 (0.93333333 0.06666667) *

 3) Number_literals>=4.5 9 0 C1 (0.00000000 1.00000000) *

Fig. 6. Rules of the Decision Tree generated by CART.

As can be seen, the field Number_literals is what determines if the queries are attacks

within the recovered results in the revise phase. Therefore, if the presence of literals in

the query is detected as an amount that could be reviewed as an attack, the dubious

query displayed in Fig. 5 could be classified as an attack.

7. Conclusions and Future Work

The combination of different AI and Data-Mining paradigms allows the development of

a hybrid IDS with characteristics such as the capacity for learning and reasoning, and

flexibility and robustness, which make the detection of SQL injection attacks possible.

The proposed idMAS-SQL architecture is capable of detecting these abnormal

situations with lower error rates than other existing techniques. The idCBR agent is

selected because of a mixture which allows the efficient detection of different types of

queries, as shown in Table 2, and because it improves the results proposed by the

mixture of other experts, as shown in Table 3. The idCBR agent incorporates both a

neural network, which makes an estimation of the most atypical cases compared with

those existing in the database, and the SVM, which behaves effectively for similar

queries; hence the efficiency of both techniques.

33

The idCBR agent also provides a decision mechanism, based on CART, which

facilitates the review of suspicious queries through the selection of similar queries and

their visualization through projection models in the Visualizer agent. Visualization

facilitates the expert's decision making through a graphical representation of similar

queries. Different existing techniques for performing dimensionality reduction have

been analyzed, and the conclusions demonstrate that CMLHL displays clearer

projections which allow a simpler interpretation of results. Furthermore, the technique

of knowledge extraction enables the recovery of relevant information which permits the

grouping of queries, as shown in the example in Section 6.

The proposed architecture in general and the idCBR and Visualizer agents in particular,

could easily be applied to the detection of other application-layer intrusions. Thus,

further research will focus on the adaptation of idMAS-SQL to cover any potential

vulnerabilities. To do so, the key features of the packets involved in the target intrusions

must be selected, and relevant data must be gathered by the Sniffer agent. There is no

need to redefine the techniques of idCBR and Visualizer agents, as the generalization

capability of the comprised neural models allows its application to new problems.

Future work will be also based on the comparison to other neural and ensemble models

for the visualization of anomalous cases.

Acknowledgements

This research has been partially supported by the Spanish Ministry of Science projects

OVAMAH (TIN 2009-13839-C03-03) and MIDAS (TIN 2010-21272-C02-01), funded

by the European Regional Development Fund, projects of the Junta of Castilla and León

BU006A08 and JCYL-2002-05; Projects of the Spanish Government SA071A08, CIT-

020000-2008-2 and CIT-020000-2009-12; the Professional Excellence Program 2006-

2010 IFARHU-SENACYT-Panama. The authors would also like to thank the vehicle

34

interior manufacturer, Grupo Antolin Ingenieria S.A., within the framework of the

project MAGNO2008 - 1028.- CENIT Project funded by the Spanish Ministry.

35

References

[1] C. Ahlberg, B. Shneiderman, Visual Information Seeking: Tight Coupling of
Dynamic Query Filters with Starfield Displays, in: Readings in Information
Visualization: using Vision to Think, Morgan Kaufmann Publishers Inc., 1999,
pp. 244-250.

[2] J. Bajo, J.M. Corchado, C. Pinzón, Y.D. Paz, B. Pérez-Lancho, SCMAS: A
Distributed Hierarchical Multi-Agent Architecture for Blocking Attacks to
Databases, International Journal of Innovative Computing, Information and
Control, 6 (2010) 3787–3817.

[3] J. Bajo, J. Vicente, J.M. Corchado, C. Carrascosa, Y.D. Paz, V. Botti, J.F.D. Paz, An
execution time planner for the ARTIS agent architecture, Engineering
Applications of Artificial Intelligence, 21 (2008) 769-784.

[4] R.A. Becker, S.G. Eick, A.R. Wilks, Visualizing Network Data, IEEE Transactions
on Visualization and Computer Graphics, 1 (1995) 16-28.

[5] E. Bertino, A. Kamra, J. Early, Profiling Database Applications to Detect SQL
Injection Attacks, in: Performance, Computing, and Communications
Conference (IPCCC'2007), New Orleans, LA, USA 2007, pp. 449-458.

[6] C. Bockermann, M. Apel, M. Meier, Learning SQL for Database Intrusion Detection
Using Context-Sensitive Modelling (Extended Abstract), in: 6th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA '09), Springer-Verlag, Berlin, Heidelberg, 2009, pp. 196-
205.

[7] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression
Trees, Wadsworth Inc., Belmont, CA, 358 (1984).

[8] G. Conti, Security Data Visualization: Graphical Techniques for Network Analysis,
No Starch Press, 2007.

[9] G. Conti, K. Abdullah, Passive Visual Fingerprinting of Network Attack Tools, in:
2004 ACM Workshop on Visualization and Data Mining for Computer Security,
ACM, Washington DC, USA, 2004, pp. 45-54.

[10] E. Corchado, C. Fyfe, Connectionist Techniques for the Identification and
Suppression of Interfering Underlying Factors, International Journal of Pattern
Recognition and Artificial Intelligence, 17 (2003) 1447-1466.

[11] E. Corchado, Y. Han, C. Fyfe, Structuring Global Responses of Local Filters Using
Lateral Connections, Journal of Experimental & Theoretical Artificial
Intelligence, 15 (2003) 473-487.

[12] E. Corchado, Á. Herrero, Neural Visualization of Network Traffic Data for
Intrusion Detection, Applied Soft Computing, ("Accepted - In press") (2010).

[13] E. Corchado, D. MacDonald, C. Fyfe, Maximum and Minimum Likelihood
Hebbian Learning for Exploratory Projection Pursuit, Data Mining and
Knowledge Discovery, 8 (2004) 203-225.

[14] E. Corchado, M.A. Pellicer, M.L. Borrajo, A MLHL Based Method to an Agent-
Based Architecture, International Journal of Computer Mathematics (Accepted -
In press), (2009).

[15] J.M. Corchado, R. Laza, Constructing Deliberative Agents with Case-Based
Reasoning Technology, International Journal of Intelligent Systems, 18 (2003)
1227-1241.

[16] J.M. Corchado, R. Laza, Constructing deliberative agents with case-based
reasoning technology, International Journal of Intelligent Systems, 18 (2003)
1227-1241.

36

[17] T.F. Cox, G. Ferry, Discriminant Analysis using Non-metric Multidimensional
Scaling, Pattern Recognition, 26 (1993) 145-153.

[18] H. Choi, H. Lee, H. Kim, Fast Detection and Visualization of Network Attacks on
Parallel Coordinates, Computers & Security, 28 (2009) 276-288.

[19] A. Chuvakin, Monitoring IDS, Information Security Journal: A Global Perspective,
12 (2004) 12 - 16.

[20] B. Damele, SQLMAP0.5 – Automated SQL Injection Tool, in, 2007.
[21] P. Demartines, Analyze de données par réseaux de neurones auto-organizés, in,

Institut National Polytechnique de Grenoble, 1994.
[22] P. Demartines, J. Herault, Curvilinear Component Analysis: A Self-Organizing

Neural Network for Nonlinear Mapping of Data Sets, IEEE Transactions on
Neural Networks, 8 (1997) 148-154.

[23] P. Diaconis, D. Freedman, Asymptotics of Graphical Projection Pursuit, The
Annals of Statistics, 12 (1984) 793-815.

[24] T.G. Dietterich, Approximate statistical tests for comparing supervised
classification learning algorithms, Neural Computation (1998) 1895-1923

[25] R.F. Erbacher, K.L. Walker, D.A. Frincke, Intrusion and Misuse Detection in
Large-scale Systems, IEEE Computer Graphics and Applications, 22 (2002) 38-
47.

[26] D. Fisch, A. Hofmann, B. Sick, On the Versatility of Radial Basis Function Neural
Networks: A Case Study in the Field of Intrusion Detection, Information
Sciences, 180 (2010) 2421-2439.

[27] J.H. Friedman, J.W. Tukey, A Projection Pursuit Algorithm for Exploratory Data-
Analysis, IEEE Transactions on Computers, 23 (1974) 881-890.

[28] B. Fritzke, A Growing Neural Gas Network Learns Topologies, Advances in
Neural Information Processing Systems, 7 (1995) 625-632.

[29] C. Fyfe, A Neural Network for PCA and Beyond, Neural Processing Letters, 6
(1997) 33-41.

[30] C. Fyfe, R. Baddeley, D.R. McGregor, Exploratory Projection Pursuit: an Artificial
Neural Network Approach, in: Research Report/94/160, University of
Strathclyde, 1994.

[31] C. Fyfe, E. Corchado, Maximum Likelihood Hebbian Rules, in: 10th European
Symposium on Artificial Neural Networks (ESANN 2002), 2002, pp. 143-148.

[32] V.H. García, R. Monroy, M. Quintana, Web Attack Detection Using ID3, in:
Workshop International Federation for Information Processing Santiago, Chile,
2006, pp. 323-332.

[33] M.P. Georgeff, A.L. Lansky, Reactive Reasoning and Planning, in: National
Conference on Artificial Intelligence, American Association of Artificial
Intelligence, 1987, pp. 677-682.

[34] J.R. Goodall, W.G. Lutters, A. Komlodi, The Work of Intrusion Detection:
Rethinking the Role of Security Analysts, in: Americas Conference on
Information Systems, 2004, pp. 1421–1427.

[35] W.G.J. Halfond, J. Viegas, A. Orso, A Classification of SQL-Injection Attacks and
Countermeasures, in: IEEE International Symposium on Secure Software
Engineering, Arlington, VA, USA, 2006.

[36] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The
WEKA Data Mining Software: An Update, ACM SIGKDD Explorations
Newsletter, 11 (2009) 10-18.

[37] Á. Herrero, E. Corchado, Mining Network Traffic Data for Attacks through
MOVICAB-IDS, in: Foundations of Computational Intelligence, Springer,
2009, pp. 377-394.

37

[38] Á. Herrero, E. Corchado, P. Gastaldo, R. Zunino, Neural Projection Techniques for
the Visual Inspection of Network Traffic, Neurocomputing, 72 (2009) 3649-
3658.

[39] Á. Herrero, E. Corchado, L. Sáiz, A. Abraham, DIPKIP: A Connectionist
Knowledge Management System to Identify Knowledge Deficits in Practical
Cases, Computational Intelligence, 26 (2010) 26-56.

[40] Á. Herrero, M. Navarro, E. Corchado, V. Julián, RT-MOVICAB-IDS: Addressing
Real-Time Intrusion Detection, Future Generation Computer Systems,
("Accepted - In press") (2011).

[41] H. Hotelling, Analysis of a Complex of Statistical Variables into Principal
Components, Journal of Education Psychology, 24 (1933) 417-444.

[42] A. Hyvarinen, Complexity pursuit: Separating interesting components from time
series, Neural Computation, 13 (2001) 883-898.

[43] A. Hyvärinen, New Approximations of Differential Entropy for Independent
Component Analysis and Projection Pursuit, in: 1997 Conference on Advances
in Neural Information Processing Systems, MIT Press, 1998, pp. 273 - 279.

[44] T. Itoh, H. Takakura, A. Sawada, K. Koyamada, Hierarchical Visualization of
Network Intrusion Detection Data, IEEE Computer Graphics and Applications,
26 (2006) 40-47.

[45] M. Junjin, An Approach for SQL Injection Vulnerability Detection, in: Sixth
International Conference on Information Technology: New Generations (ITNG
'09), IEEE Computer Society, Washington, DC, USA, 2009, pp. 1411--1414.

[46] A. Kamra, E. Bertino, G. Lebanon, Mechanisms for database intrusion detection
and response, in: 2nd SIGMOD PhD workshop on Innovative database research
(IDAR'2008), ACM, New York, NY, USA, 2008, pp. 31--36.

[47] K. Kemalis, T. Tzouramanis, SQL-IDS: a specification-based approach for SQL-
injection detection, in: ACM symposium on Applied computing (SAC'2008),
ACM, Fortaleza, Ceara, Brazil, 2008, pp. 2153-2158.

[48] M. Kiani, A. Clark, G. Mohay, Evaluation of Anomaly Based Character
Distribution Models in the Detection of SQL Injection Attacks, in: Third
International Conference on Availability, Reliability and Security (ARES'2008),
IEEE Computer Society, Washington, DC, USA, 2008, pp. 47-55.

[49] T. Kohonen, The Self-Organizing Map, Proceedings of the IEEE, 78 (1990) 1464-
1480.

[50] G. Kou, Y. Peng, Z. Chen, Y. Shi, Multiple Criteria Mathematical Programming
for Multi-class Classification and Application in Network Intrusion Detection,
Information Sciences, 179 (2009) 371-381.

[51] Y. LeCun, L. Bottou, G.B. Orr, K.R. Müller, Efficient backprop in: Neural
Networks, Tricks of the Trade, Springer Verlag, 1998, pp. 546.

[52] K.-L. Ma, Visualization for Security, ACM SIGGRAPH Computer Graphics, 38
(2004) 4-6.

[53] D.J. Marchette, Computer Intrusion Detection and Network Monitoring: A
Statistical Viewpoint, Springer-Verlag New York, Inc., 2001.

[54] R. Marty, Applied Security Visualization, Addison-Wesley Professional, 2008.
[55] S. Mukkamala, A.H. Sung, A. Abraham, Intrusion detection using an ensemble of

intelligent paradigms, Journal of Network and Computer Applications, 28
(2005) 167--182.

[56] E. Oja, Neural Networks, Principal Components, and Subspaces, International
Journal of Neural Systems, 1 (1989) 61-68.

38

[57] S. Pang, T. Ban, Y. Kadobayashi, N. Kasabov, Personalized Mode Transductive
Spanning SVM Classification Tree, Information Sciences, 181 (2011) 2071-
2085.

[58] K. Pearson, On Lines and Planes of Closest Fit to Systems of Points in Space,
Philosophical Magazine, 2 (1901) 559-572.

[59] S.T. Powers, J. He, A Hybrid Artificial Immune System and Self Organising Map
for Network Intrusion Detection, Information Sciences, 178 (2008) 3024-3042.

[60] W. Robertson, G. Vigna, C. Kruegel, R.A. Kemmerer, Using Generalization and
Characterization Techniques in the Anomaly-Based Detection of Web Attacks,
in: 13th Annual Network and Distributed System Security Symposium
(NDSS'2006), San Diego, CA, USA, 2006.

[61] D. Sanger, Contribution Analysis: a Technique for Assigning Responsibilities to
Hidden Units in Connectionist Networks, Connection Science, 1 (1989) 115-
138.

[62] H.S. Seung, N.D. Socci, D. Lee, The Rectified Gaussian Distribution, Advances in
Neural Information Processing Systems, 10 (1998) 350-356.

[63] T. Shon, J. Moon, A Hybrid Machine Learning Approach to Network Anomaly
Detection, Information Sciences, 177 (2007) 3799-3821.

[64] F. Valeur, D. Mutz, G. Vigna, A Learning-Based Approach to the Detection of
SQL Attacks, in: Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), Vienna, Austria, 2005, pp. 123-140.

[65] M. Wooldridge, Introduction to MultiAgent Systems, John Wiley & Sons, 2002.

	idMAS-SQL: Intrusion Detection Based on MAS to Detect and Block SQL Injection through Data Mining
	1Faculty of Computer Systems Engineering, Technological University of Panama
	Building Nº3, Campus «Dr. Víctor Levi Sasso», Universidad Tecnológica Ave. Panamá City, Panamá
	cristian_ivanp@usal.es
	5. Agents for Detecting SQL Injection Attacks

